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PREFACE.

ALTHOUGH there are several excellent books on Surveying

that deal more or less thoroughly with astronomical obser-

vation, it appeared to the writer, as the result of his

experience in teaching the subject, that there is a distinct

need of an elementary work suitable for the student and

for the surveyor who is taking up astronomical observa-

tion for the first time. Most of the purely surveying

books are content to quote practical formulae for the

reduction of the observations, with little or no attempt to

expound the principles by which the formulae are derive d.

On the other hand, the theoretical works on astronomy

in which the mathematical theory is developed are gener-

ally too recondite for the beginner, and deal to a large

extent with matters of no special interest to the surveyor.

The present work is an attempt to provide an elementary

exposition, not only of the practical methods of observa-

tion and computation, but of the main principles that must

be thoroughly understood if the surveyor is to be master

b
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of his profession. Throughout the work the methods of

observation are illustrated with numerous fully worked-out

actual observations, and a prominent feature of the book

is the attention that is given to the effects of observational

and instrumental errors of different kinds. A large pro-

portion of the examples set for working have been taken

from the papers set for candidates at the examinations for

Licensed Surveyors in Australia.

R. W. C.

ADELAIDE, September, 1918.
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ASTRONOMY FOR SURVEYORS.

CHAPTER I.

THE SOLUTION OF SPHERICAL TRIANGLES.

IN this chapter the principal formulae of spherical

trigonometry, such as will be afterwards applied to

calculations on the celestial sphere, are brought together

for convenient reference. No attempt will be made to

establish the formulae, which are demonstrated in any of

the ordinary books on spherical trigonometry, but a brief

synopsis will be given of the usual methods for the

solution of spherical triangles under different conditions.

Great Circles. The line of intersection made with the

surface of a sphere by a plane passing through the centre

of the sphere is known as a great circle. If this circle

passes through two points A and B on the surface of the

sphere, then the shortest distance between A and B,

measured along the sphere's surface, is that measured

along the arc of the great circle joining them. Only one

great circle can be drawn to pass through two given

points on the surface of a sphere, unless they happen
to be at opposite extremities of a diameter, and the

length of the shorter arc of this great circle between the

two points is the shortest distance between them. Meri-

dians of longitude on the earth's surface are great circles.

In spherical trigonometry it is always assumed that

the arcs representing the sides of the triangles considered

are arcs of great circles.
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Small Cfrcltts:-^Tne line
'

of l intersection made with the

surface of a sphere by a plane that does not pass through
the centre is known as a small circle. The ordinary
formulae of spherical trigonometry do not apply to tri-

angles having sides that are arcs of small circles. A
parallel of latitude on the earth's surface is a small circle.

It follows that the shortest distance between two points
in the same latitude is not that measured along the

parallel of latitude, but is measured along the arc of the

great circle joining them.

Spherical Triangles. Denoting the angles of a spherical

triangle by A, B, and C, and the sides opposite to these

angles by a, b, and c respectively, the sides being as

usual measured by the angles which they subtend at the

centre of the sphere, then we have the following funda-

mental relations :

(a) The sines of the angles are proportional to the

sines of the opposite sides :

sin A _ sin B _ sin C
sin a sin b sin c

(b) One side of a triangle is expressed in terms of the

two other sides, and the angle included between them by
one of the three formulae :

cos a = cos b cos c + sin b sin c cos A\

cos b = cos c cos a + sin c sin a cos B > . (2)

cos c = cos a cos b + sin a sin b cos C;

(c) From these may be derived another set of six use-

ful relationships of which the following two are types :

cot a sin b = cot A sin C + cos 6 cos C^
( O }

cot b sin a = cot B sin C -f- cos a cos Cj
v

Whilst the formulae (2) and (3) are extremely useful in

all sorts of investigations into the properties of spherical

triangles, they are not adapted to logarithmic computation,
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and are consequently not suitable for use in the numerical

solution of triangles. For this purpose other formulae are

commonly used, derived from these fundamental relation-

ships but expressed in a form more suitable for use with

logarithms.
The Solution of Right-Ar.gled Spherical Triangles. The

relationships between the sides and angles of a right-

angled spherical triangle are very conveniently summarised

by the mnemonic rules due to Napier, the inventor of

logarithms, and known as Napier's Rules of Circular

Parts.

Denoting the right angle by C, Napier defines five

"circular" parts (i.e., a, 6, 90 A, 90 c, 90 B),
and these are supposed, as in

the figure, to be ranged round
a circle in the order in which

they stand in the triangle.

Then, if any one of these five

parts is selected and called the

middle part, the two parts on
each side of it are called the

adjacent parts, and the remain-

ing two are called trie opposite

parts. For instance, if a is chosen as the middle part,
90 B and b are the adjacent parts,, and 90 c and
90 A are the opposite parts. Then Napier's Rules

are :

Sine of middle part ^product of tangents of adjacent

parts.

Sine of middle part =product of cosines of opposite

parts.

Thus

sin a =cot B tan b

and sin a =sin c sin A.
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As an aid to memory, it may be noticed that the vowels

in the words sine and middle are the same, so with tangent
and adjacent, cosine and opposite.

By choosing different parts in turn as the middle parts,

we obtain all the possible relationships between the sides

and angles, and with a little practice it is easy to choose

the particular ones wanted. If we want a relationship

between a, 6, and c, for example, 90 c must be taken

as the middle part, and we have

cos c=cos a cos 6.

[f a relationship between a, A, and B is required, take

90 A as the middle part, whence

cos A =sin B cos a

and so on.

There are six cases to consider in the solution of right-

angled triangles, and the formulae required, readily
obtained from Napier's rules, are as follows :

(1) Given the hypotenuse c and an angle A.

tan b = tan c cos A,
cot B = cos c tan A,
sin a --= sin c sin A.

(2) Given a side b and the adjacent angle A.

tan b
tan c =

cos A'

tan a = tan A sin b,

cos B = cos b sin A.

(3) Given the two sides a and b.

cos c = cos a cos b,

cot A= cot a sin b,

cot B = cot b sin a .
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(4) Given the hypotenuse c and side a,

cos c
cos o =

,

cos a

tan a
cos B = -

,

tan c

sin a
sin A= .

.

sin c

(5) Given the two angles A and B,

cos c = cot A cot B,

cos A
cos a =

-.- -,
sin B
cos B

cos o = - -.
sin A

(6) Given a side a and opposite angle A,

sin a
sin c = -

,

sin A
sin b = tan a cot A,

cos A
sin B = .

cos a

The Solution of Oblique Spherical Triangles. (1) Given

the three sides, a, b, and c.

Let s=l (a +6+ c).

Then the angle A may be computed from any one of

the following three formulae :

AA / sin (s b) . sin (s c)
sin -

A/
- L

-^-T
L:-T-

2 sin b . sin c

A /sin s . sin (s a)

2
*

sin b . sin c

/sin (5 6) . sin (<? c}

tanA=y r- -V--- ~
sm ,s . sin s



6 ASTRONOMY FOR SURVEYORS.

Similar formulae apply, of course, to the other two

angles.

(2) Given two sides a and 6, and the included angle C,

cos

sin \

These determine J(A+B) and |(A B), and hence,

by addition and subtraction, A and B.

c may either be found from

sin a sin C
sin c =

sin A

The former of the two alternative formulae for c is the

simpler, but as the value of c is here found from its sine,

it is sometimes difficult to determine which of two values

is to be given to it. This difficulty does not arise with

the second formula.

(3) Given one side c and two adjacent angles A and B.

C S *
~

cos J (A-f-B)

sin \ (A-B)

tan c.

These determine J (a + 6) and \ (a~b), and hence, by
addition and subtraction, a and 6.

C may be found either from

sin A . sin c
sinC =

sin a

sm J (a
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Similar remarks applying to the two formulae as in

case (2).

(4) Given two sides a and 6, and the angle opposite
one of them A.

This is generally known as the ambiguous case.

B may be found from

sin 6
,

sin B = - - sin A,
sin a

which will usually determine two possible values of B.

If the value of sin B obtained is greater than unity there

will be no solution at all.

Having determined B, C and c may be found from the

formulae :

(5) Given two angles A and B, and the side opposite
one of them, a.

The solution in this case is similar to case (4), and two
solutions are often possible :

sin B sin a
sin 6 = --

:

--
,

sin A
after which the same two formulae as in case (4) determine

tan | C and tan \ c.

Spherical Excess. -The sum of the three angles of a

spherical triangle is always greater than 180, the differ-

ence A + B + C 7t being known as the spherical excess.

If this is denoted by E, the area of any spherical triangle
E r 2

,
the spherical excess being in circular measure,

and r denoting the radius of the sphere.



CHAPTER II.

THE CELESTIAL SPHERE AND ASTRONOMICAL
CO-ORDINATES.

The Celestial Sphere. We may easily imagine, looking

up to the heavens on a cloudless night, that the stars

are distributed over the surface of the spherical vault

of sky above us. It is not really so, because refined

measurements have proved that the distances of the

stars differ tremendously, but these distances are so

immense that in most cases they cannot be measured

even by the most skilful of astronomers with the most

delicate of instruments. The consequence is that for

practical purposes we are never concerned with the

distances of the stars, but only with their directions,

and in order to record these it is exceedingly convenient

to picture the stars as distributed over the surface of an

imaginary spherical sky having its centre at the position
of the observer. Thus has arisen the conception of the

Celestial Sphere, which we may consider as a geometrical
device to enable us to record and measure the directions

of the stars.

In Fig. 1, suppose that represents the position of

the observer. With O as centre, imagine a spherical
surface described with a radius of any length we please ;

we may make it a few feet or a few thousand miles, it

makes no difference. Now, let A, B, and C be three of

these immensely distant stars, and let the lines A, OB,
and C cut our imaginary sphere in a, 6, and c respec-

tively. Then, if we are only concerned with the directions

of the stars, we may just as well picture them as occupying
the positions a, b, and c as their actual places A, B, and C.
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In fact, to the observer at O their appearance would be

unaltered. So, proceeding in this way, we may picture

all the stars in the sky as occupying places on this imagi-

nary surface, which is then known as the Celestial Sphere.

It may be considered as the spherical surface upon which

the stars appear to lie, but, of course, in reality they are

not all equally distant from us, and they are only repre-

sented in this way in order to conveniently measure their

directions. ^
If through the point O a vertical line be drawn to

intersect the celestial sphere over the observer's head

-ku_Z; and to cut it vertically below his feet at N, the

point Z is called the Zenith and the point N the Nadir.

The Zenith is thus the point in the celestial sphere directly

over the observer,

If a horizontal plane H R be drawn through O, a plane
that is to say, at right angles to the vertical O Z, the

direction in which gravity acts it will cut the celestial



10 ASTRONOMY FOR SURVEYORS.

sphere in a great circle, which is called the Celestial

Horizon. To an observer whose eye was close to the

surface of a calm ocean, the celestial horizon would form

the boundary of the visible part of the celestial sphere.
The Apparent Motion of the Stars. Continued observa-

tion shows that, leaving the few planets out of account,

the other stars always maintain the same relative posi-

tions, and hence they are commonly referred to as the

fixed stars. Whilst, however, there is no motion relative

to one another, they all appear to revolve from East

to West in a period slightly less than twenty-four hours

round a point in the sky that is known as the celestial

pole. The motion is just as though the whole celestial

sphere, carrying the stars, revolved about an axis passing

through this point and its own centre. The ancients,

who regarded the earth as a flat plane, thought that

this was really what occurred, but we know now that

this motion is apparent only, and is due to the fact that

we view the stars from a revolving earth. Thus, referring

to Fig. 2, the whole of the stars appear to slowly describe

circles about a point P in the celestial sphere just as

though the whole sphere revolved about the axis O P,

so that every star completes its circle in the same time.

Some stars, such as A, which are comparatively near to

the point P, describe only a small circle, which never

takes them below the horizon, so that such stars are

always visible. Thus the Southern Cross in the latitude

of Southern Australia can be seen at all times, and never

sets. Other stars, such as B and C, which are further

away from P, describe much larger circles, which take

them, as is shown in the figure, below the horizon for a

portion of their revolution, so that such stars rise in

the East and set in the West. This diurnal motion of

the stars may be very prettily demonstrated by exposing
a fixed camera containing a highly sensitised plate directed

towards the celestial pole on a clear night, leaving the
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plate exposed for an hour or two. The images of the

brightest moving stars will leave trails upon the plate
which are all seen to be arcs of circles having a common
centre at the celestial pole.

Now, the stars are so distant that their apparent
direction in space is absolutely unaltered by any move-
ment of the observer over the earth's surface. The
direction of any particular star is precisely the same,
even when determined by our most refined instruments,
whether viewed from Melbourne, London, or Perth.

Fig. 2.

More than this, we know that the earth, in the course

of a year, describes a path round the sun that is approxi-

mately a circle whose diameter is over 190 millions of

miles, yet even this great shift of the point of observation

produces no appreciable change in the directions of the

fixed stars. At intervals of six months apart, when the

points of observation, that is to say, are distant something
like 190 millions of miles, a slight difference in direction,

amounting to only a fraction of a second of arc, may
be detected in a few stars with the refined observations
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possible at fixed observatories. But even this cannot be

found with the great majority of the stars, so that

we may regard the position of the observer on the earth's

surface as of absolutely no importance when measuring
the direction of the stars in space. Looking at Fig. 2,

we may regard the earth as a tiny speck at O, the centre

of the great celestial sphere, and no matter where we
take the point on this tiny speck, the direction of the

line O P remains the same within the possibilities of our

means of measurement, so that the lines joining any one

of the fixed stars to different points on the earth's surface

may all be considered as parallel.

It follows from this that the portion of the sky visible

to an observer at any point on the earth's surface presents

exactly the same appearance as it would do if it were possible

for him to view it from the earth's centre. This statement

refers only to the fixed stars.

Therefore, if we imagine an observer anywhere on a

small spherical earth at the centre of a great celestial

sphere of dimensions indefinitely great compared to the

earth, and suppose the earth to rotate about an axis

through its centre, the successive pictures of the sky

presented to the observer during a revolution will be

precisely the same as they would be if the earth remained

stationary and the great celestial sphere itself were to

rotate about the same axis.

Thus, looking at Fig. 2, if we produce the line P
backwards to cut the celestial sphere below the plane
of the horizon in P 1

,
the fixed stars appear to the observer

at O to revolve on the celestial sphere about the axis

P P 1
. In reality it is the earth that is revolving, and it

is the earth's axis that lies in the direction P P 1
,
so that

the celestial poles P and P 1 are the points in which the

axis of the earth, if indefinitely produced, would cut

the celestial sphere. If the observer is in the Southern

Hemisphere, the pole P visible to him will be that to which
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the earth's South Pole is directed. If he is in the Northern

Hemisphere the visible celestial pole is that towards

which the earth's North Pole points. j$& ^
Celestial Equator. If we take a plane through O **l

perpendicular to the line^? P 1
,

it will cut the celestial

sphere in a great circle Ifcft, which is known as the Celestial , /

equator. Its plane clearly is coincident with the plane ,*

of the equator of the earth. Since two great circles of a
T^

sphere always intersect at opposite extremities of a dia-

meter, it follows that a star revolving in the celestial }*

equator has its path divided into two equal parts by the

circle of the celestial horizon H R, so that the time during
which it is visible above the horizon will be equal to the

time it is out of sight below.

Thus, to an observer in Southern latitudes, the celestial \

pole P lies to the south and, since the line P P 1
(Fig. 2)

marks also the direction of the earth's axis, the celestial

pole will be in the direction of the true geographical
South. Any star, such as B, lying to the South of the

celestial equator, will trace the greater part of its circular

path above the plane of the horizon. On the other hand,
a star, such as D, to the North of the celestial equator,
will trace out the smaller portion of its path only above

the horizon, so that it will be visible for less than half

of its time of revolution. Stars such as E, sufficient^

far to the North, will not be visible at all to a person in

this latitude, but will complete the whole of their revolu-

tion below the plane of the horizon, as shown in the

figure.

Astronomical Co-ordinates If we wish to mark the

position of a point on a plane, we may do so by measuring
its distances from two fixed straight lines at right angles.

A knowledge of these two distances is sufficient to enable

us to fix the position of the point, but one distance only
would not be enough. Measured in this way, these two

distances are spoken of as the
"
co-ordinates

"
of the
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point. Now, in astronomical observation, we commonly
require to determine the position of a star on the celestial

sphere, and so it is necessary to have some system of

co-ordinate measurement applicable to the purpose.
Either one of two sets of co-ordinates is commonly em-

ployed. The first set is Altitude and Azimuth.

In Fig. 3, let O be the position of the observer, Z the

zenith, P the celestial pole. Then the plane Z P will

cut the plane of the horizon through in the North and

South points N and S. S Z N is known as the plane of

the Meridian.

Suppose that B is a star describing its circular path
ABC round the pole P.

f

Fig. 3.

The plane Z B O cuts the plane of the horizon in the

line D O.

Then it is clear that if we know the angle DON, which

is the angle that the plane Z D makes with the plane

f
of the meridian, our knowledge is sufficient to fix the

I position of the plane Z D.

If in addition we know the angle BOD, the position

of the star B may be fixed on the celestial sphere.

The angle. DON, which the plane passing through the

zenith and the star makes with the meridian, measures

what is known as the azimuth of the star. It is generally

measured from the North towards the right.
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The angle BOD, measuring the angular altitude of

the star in a vertical plane above the horizon, is spoken
of as the altitude of the star.

Instead of the altitude we may measure the angle
Z B, which is known as the Zenith Distance, and is

clearly the complement of the altitude.

If we know both the altitude and azimuth of a star

at any time we can mark its position on the celestial

sphere. The ordinary theodolite is adapted for measure-

ment in this system of co-ordinates.

The second or alternative set of co-ordinates is Right

Ascension and Declination.

In ,Fig. 4, let be the position of the observer, Z the

zenith, P the celestial pole, and S P Z N the plane of the

meridian.

Suppose that B is a star travelling round the pole in

the direction of the arrow in a circle of which only half

is shown.

Q D Q' is the plane of the celestial equator drawn

through O at right angles to P.

P B D is the arc of a great circle of the celestial sphere

intersecting the celestial equator in D. The plane of this

great circle must pass through O, and the angle P O D is

a right angle.
Then clearly if we know the position of the point D

on the celestial equator, and also know either the angle
P B or the complementary angle BOD, we shall be

able to fix the position of the star B on the celestial

sphere.
The position of the point D on the equator may be

determined if we know its angular distance from some
known fixed point also on the equator. The fixed point
selected for the purpose is known as the First Point of

Aries. It is usually indicated by the symbol <Y>
, denoting

a pair of ram's horns. The exact nature of this point
we shall discuss a little later on, but for the present all



16 ASTRONOMY FOR SURVEYORS.

that we want to know is that it is a point whose position
'can always be accurately determined.

If we know, then, the angular measure of the arc v D
that is to say, the angle which the arc subtends at the

centre 0, and also the direction in which it is measured

from <v that is sufficient to determine D.

To avoid any confusion as to the direction in which

the arc <Y D should be measured, it is always measured

from <Y> towards the East that is to say, in the opposite
direction to that in which <v travels round the celestial

Fig. 4.

equator Q Q' because on moves round with the rest

of the fixed stars from East to West.

Measured in this way, the angular measure of the

arc <v D is known as the Right Ascension .of the star B.

It may have any value from to 360. It is commonly
denoted by the letters R.A.

The Right Ascension of the star being known, its

position may be fixed if we know either the angle FOB,
the angular measure of the arc P B, or the angle DOB,
the angular measure of the arc D B.
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The angular measure of the arc P B is known as the

Polar Distance of the star B. It is generally denoted by
the letters N.P.D. or S.P.D., according as it is measured

from the North or the South Pole.

The angular measure of the arc D B is called the

Declination of the star B, and the circle P B D is known
as the Declination Circle of the star. The declination is

said to be North or South according as the star is North

or South of the*eq[u'alor.

Polar Distance and Declination are always comple-

mentary to one another, their sum being 90, so that

if one is known the other is found by simple subtraction

from 90.

Comparative Advantages of the two Co-ordinate Systems.

-The altitude and azimuth of a star are readily measured

with a theodolite, and serve to fix the position of a star

at any particular instant, but owing to the diurnal motion

of the stars these co-ordinates are continually changing.
On the other hand, the right ascension and declination

of a star are constant, for the reference point, the first

point of Aries, partakes of the diurnal motion of the stars.

These co-ordinates are in consequence the most convenient

for recording the relative positions of the stars on the

celestial sphere. Thus in the Nautical Almanac the stars

are catalogued and tabulated by their right ascensions

and declinations.

The Sidereal Day and Sidereal Time. As the revolution

of the whole system of stars about the polar axis takes

place with absolute uniformity from East to West, the

period of revolution serves as a convenient unit of time

for astronomical purposes. All the stars complete their

circles of revolution in the same period, which is known
as the sidereal day. This day is about 4 minutes shorter

than the ordinary day. Sidereal clocks, adjusted to keep
sidereal time, the sidereal day being divided into 24 hours,

are used in fixed observatories. Such clocks are arranged
2
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to mark hr. min. sec. when the first point of Aries,

the point on the celestial equator from which Right
Ascensions are measured, crosses the meridian of the

observer. Thus the sidereal time at any instant is the

interval that has elapsed, measured in sidereal hours,

minutes, and seconds, since the last transit across the

meridian of the first point of Aries.

Looking at Fig. 4, it is clear that all stars on the same
declination circle, such as P B D that is to say, all

stars having the same right ascension will cross the

meridian at the same instant. A star whose right ascen-

sion is 180 will cross the meridian 12 sidereal hours after

the first point of Aries, and one whose right ascension

is 15 will cross the meridian at 1 hr., sidereal time. Thus

we deduce the important result that the right ascension

of a star, when reduced to time at the rate of 24 hours for

360 or 1 hour for 15, gives the sidereal time at the moment
when it crosses the meridian.
>

Hour Angle. In Fig. 4 the angle R^P^-^whMir-is-the

angle that the plane of the declination circle P B D makes
with the plane of the meridian, is known as the hour

angle of the star B. If we know the hour angle of a star,

and also its polar distance, we can clearly mark the

position of the star on the celestial globe, so that these

two may be used as another system of co-ordinates. The
hour angle of a star is continually changing, but owing
to the uniform character of the star's motion, it varies

.f p pppafg/nf. raff j If the hour angle is 90 measured

towards the East, then the star will take 6 sidereal hours

to reach the meridian. Thus a knowledge of the hour,

angle at once gives us the time the star will take to reach

the meridian, if it be on the East side of it, or the time

that has elapsed since the star crossed the meridian, if

it be on the Western side.

Prime Vertical. The plane through the zenith at right

angles to the meridian that is, the vertical plane running
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East and West is Is

East and West line,
1

lown as the Prime Vertical. The
>yhich is the line of intersection of

th the plane of the horizon, is also

of the plane of the celestial equator
ill be evident from Fig. 2.

al Terms. For purposes of reference,

es dealt with in this chapter are

e.

the Prime Vertical w
the line of mfefsectidi

with the horizon, as
j\

Synopsis of Astronomi

the principal quantit
illustrated in one figu

Fig. 5a is drawn for an observer in the Southern Hemi
sphere, and Fig. 5b for the Northern Hemisphere.

EXAMPLES.

1 . The R.A. of a star being 35 20', what is the local sidereal time when
the star is in the meridian ?

Ans. 2 hrs. 21 min. 20 sec.

2. If the R.A. of a star is 295 and the sidereal time is 15 hours, is the

star to the East or West of the Meridian ?

Ans. To the East.

3. What is the declination of a star that rises exactly in the East ?

Ans. 0.

4. What is the hour angle of the star in Question 2 ?

Ans. 70.

5. The declination of a star is 35 South. Determine its S.P.D. and its

N.P.D.
Ans. 55 and 125.

6. If the First Point of Aries crosses the meridian exactly two hours,

as measured by a sidereal clock, after a certain star, what is the R.A. of

the star ?

Ans. 330.

7. The declination of the Pole Star is 88 51' North. What is the difference

between its greatest and least zenith distances ?

Ans. 2 18'.

8. At the time of the year when the R.A. of the sun is zero, determine

approximately the time of rising of a star with declination and R.A.

150.
Ans. 4 p.m.

9. What is the point whose altitude is 90 and hour angle zero ?

Ans. The zenith.



20 ASTRONOMY FOR SURVEYORS

A I

Fier. 5.

Fig. 56.

O is the observer.

S W N E, the plane of the horizon.

Z, the zenith.

P, the celestial pole ; P, the

polar axis.

S P Z N, the plane of the meridjan.
K' W Q E, the celestial equator.
W Z E, the prime vertical.

N, S, W, K, the North, .South,

West, and East points.

B, any star.

Z P B, the hour angle of B.

P B D, the declination circle of B.

P B, the polar distance of 1>.

B D, the declination of B.

of> U, the right ascension of B.

Z B P, the vertical through B.

BF, the altitude of B.

B Z, the zenith distance of B.

N F, the azimuth of B.
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CHAPTER III.

THE EARTH.

The Earth a Globe. That the earth is a globe is no longer
a matter for dispute. It has been circumnavigated and

.mapped and measured, and no other supposition will

fit the facts. We see its round shadow as cast upon the

moon during a partial eclipse. We see the planets as

great balls of similar dimensions revolving at different

distances round the great central sun. The law of gravi-
tation explains the form of their orbits and enables their

movements to be predicted with the greatest exactness.

That our earth is a globe like these, revolving in a similar

way around the sun, is the only satisfactory hypothesis
that will account for their apparently involved move-
ments in the heavens. The whole of the apparent move-
ments of the heavenly bodies are readily accounted for

on the supposition that the earth is a globe, and no

explanation even plausibly satisfactory has been advanced

on any other supposition.
In the case of some of the planets we can actually

observe that they are in rotation in a manner similar to

that in which we assume our own earth must rotate to

account for the phenomena of night and day and of the

diurnal rotation of the stars. In the planet Mars we see

the poles or extremities of the axis of rotation surrounded

by white caps apparently similar to the great caps of ice

and snow that surround the poles of our own earth.

Terrestrial Latitude and Longitude. The extremities of the

axis of rotation of the earth are called the Poles, and are

distinguished as the North and South Poles.
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A plane through the earth's centre at right angles to

the axis cuts the earth's surface in a circle known as the

Equator. Every point on the terrestrial equator is thus

equidistant from the North and South Poles.

In order to mark the position of a point on the earth's

surface, it is necessary to have a system of co-ordinates

similar to those we have already discussed in connection

with the celestial sphere.

Suppose that P (Fig. 6) is a point on the earth's surface,

the position of which it is desired to locate. A plane

Eig. 0.

passing through P and the earth's axis will cut the earth's

surface in a great circle N P M S, which is known as a

Meridian. Suppose this Meridian cuts the equator at

the point M. Then clearly, if we know the position of

the point M on the equator, and also the length of the

arc P M or the angle which it subtends at the earth's

centre, we shall be able to fix the point P.

The position of M on the equator is determined by the

longitude of P.

To measure this, some arbitrary place A must be
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selected on the equator as a starting point. The point

actually chosen is the point of intersection of the meridian

passing through Greenwich, shown as N G A S in the

figure, and the equator. The angular measure of the arc

A M that is to say, the angle A M is known, as the

longitude of P. Thus, all points on the meridian passing

through P have the same longitude. All points on the

meridian N G A S, passing through Greenwich, have zero

longitude. The longitude of other places is reckoned as

so many degrees East or West of Greenwich until we
come, to 180, which is the longitude of the meridian

exactly opposite to the Greenwich meridian.

The angle POM, which is the angle between the

direction of the vertical at P and the vertical at M,
measures what is known as the latitude of P. If we draw
a plane through P at right angles to the earth's axis,

it will intersect the earth in a small circle L P L' parallel
to the equator. Such a circle is called a Parallel of Lati-

tude, and all points on the same parallel clearly have the

same latitude.

Latitude is measured as so many degrees North or

South of the Equator. The latitude of the North Pole

is 90 N.

Thus, if we know the position of the meridian of 'zero

longitude, the latitude and longitude of a place are suffi-

cient to enable us to mark its position on the globe.
The Length of a Degree of Longitude. If the parallel

of latitude through P intersects the meridian through
Greenwich in B, it is clear that the arc B P will be much
smaller than the arc AM. It will have the same angular
measurement on a much smaller circle. If P were very
near to the North Pole, the arc B P would be very small

indeed. Thus two places in the same latitude but differing

by, say, ten degrees of longitude, will be very much closer

together if they are in a
"
high

"
latitude that is to say,

a latitude approaching 90 than they will be if both
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are on or near the equator. Thus a degree of longitude
has its greatest value, when measured in distance along
the earth's surface, at the equator, its value becoming
less and less as we approach the poles. At the equator
a degree of longitude is equivalent to a distance of about

69 miles.

A degree of latitude, on the other hand, is always of

approximately the same value, about 69 miles, whether

it is measured near the poles or near the equator, because

it is measured along meridians which are all great circles

of the same diameter.

The Zones of the Earth. Certain parallels of latitude

Arctic Circle

Tropic of Cancer.

Equator.

Tropic of. Capri

divide the earth's surface into five belts or divisions,

termed zones. These mark in a general way a natural

division of the earth's surface according to climate. The

parallel of latitude 23 27J' North of the Equator is

termed The Tropic of Cancer, and the corresponding

parallel South of the Equator is termed The Tropic of

Capricorn. As we shall presently see, at all places between
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these parallels at some part of the year the sun shines

directly overhead at mid-day. As a consequence, the belt

included between these is the hottest portion of the

earth's surface, and it is known as the Torrid Zone.

The parallel of latitude 66 32J' North of the Equator
is called the Arctic Circle, and the corresponding parallel

South of the Equator the Antarctic Circle. The belt

between the Arctic Circle and the Tropic of Cancer is

known as the North Temperate Zone, and that between

the Antarctic Circle and the Tropic of Capricorn as the

South Temperate Zone. The regions around the two poles

bounded by the Arctic and Antarctic circles respectively
are termed the Frigid Zones. At all places within the

frigid zones the sun is below the horizon at mid-day for

some portion of the year.
The Altitude of the Celestial Pole is Equal to the Latitude of the

Place of Observation. In Fig. 8, let O be the position of the

observer and C the earth's centre. Then the direction of

the pull of gravity at O is in the direction O C. This,

then, will mark the direction of the vertical at O,

and the zenith, Z, of the observer will be in C O
produced.
H R. at right angles to O Z, marks the plane of "this

horizon.

If C P, the earth's axis, be produced to cut the celestial

sphere in P 1; then P x will be the celestial pole.

Draw O P 2 parallel to C P x .

Then the celestial pole being, as we have seen, at ax

distance from the earth that is practically infinite in

comparison to the earth's radius, P2 wjll mark the

direction in which the celestial pole is seen by the observer

at O.

Draw the plane of the equator E C Q at right angles
to the earth's axis.

Then, from our definition, the latitude of is measured

by the angle ECO.
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Now the angle ZOP2 =the angle O C P 1? and the

complements of these angles are equal.

Therefore, the angle P2 OR=the angle E C i.e.,

the altitude of the pole = the latitude of the observer.

It follows from this that if the observer travels equal
distances North and South from 0, since his latitude will

change by equal amounts, the altitude of the celestial

pole will also be increased or decreased by equal amounts.

As this is actually the case from observation, the fact

forms a strong proof of the sphericity of the earth.

To find the Shortest Distance, measured along the Earth's

Surface, between two Places whose Latitude and Longitude are

given, assuming the Earth to be a True Sphere.

In Fig. 9, let P and R be two places whose latitudes

and longitudes are known.

The shortest distance between P and R, measured

along the earth's surface, will be the length of the arc

of the great circle joining them.
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Draw the meridians passing through P and R.

Then if we know the latitudes, we know the angular
measure of the meridian arc* N P and N R, N being the

North Pole.

If P is in North latitude, the arc N P is the complement
of the latitude. If R is the South latitude, the arc N R
is 90+ the latitude.

The angle P N R is the difference of the longitudes of

P and R if both are measured in the same direction, or

Fig. 9.

the sum of the longitudes, if one is East and the other

West.

Thus in the spherical triangle N P R, we know the sides

N P and N R and the included angle P N R.

Then by the ordinary methods of spherical trigonometry
we can compute the angular measurement of the great

circle arc P R, and consequently its lineal measurement,
if we know the radius of the earth.

The radius of the earth is approximately 3,960 miles.
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EXAMPLE. Find the shortest distance measured along

the earth's surface between Perth (long. 115 50' E., lat.

31 57' 8.) and Brisbane (long. 153 I
7

E., lat. 27 28' S.) 9

assuming that the earth is a sphere of radius 3,960 miles.

In this case, both places being in the Southern Hemisphere, it will be

preferable to solve the triangle S P R (Fig. 9) rather than N P R.

If A denotes the position of Brisbane, B of Perth, and C the South Pole,

we shall have in the spherical triangle ABC

C A = b = 90 - 27 28' = 62 32'

C B = a = 90 - 31 57' = 58 03'

C = 153 1' - 115 50' - 37 11'

Since we only want to find c, the simplest way to solve this triangle is

to divide it into two right-angled triangles by

drawing a great circle arc B D to cut C A at

right angles.

Then we have from the right-angled triangle

BDC
tan C D = cos C tan a.

tan a = tan 58 3',

cosC = cos 37 11',

tan C D, . . .

.-. CD = 51 56' 47",

and cos c = cos A D . cos B D

10-2050545

9-9012980

10-1063525

Fig. 9

cos a cos 58 3',

cos (b
- C D) = cos 10 35' 13",

cos CD = cos 51 56' 47",

cos c, .

c = 32 26' 49".

9-7236026

9-9925435

9-7161461

9-7898616

9-9262845

The circular measure of this angle is -5663.

.-. The distance required = -5663 X 3,960 = 2,242-5 miles.

The more usual method of solving the triangle A B C, having given the
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two sides a, b, and the included angle C, would be to first find the angles
A and B by means of the formulae

cos %(a + 6)

tan (A B) = S~? (
ff ~ b

) cot
sin f (a + b)

and then find c from the formula

sin C . sin a

sin A
It' this method is adopted to find c, it must be remembered that when

sin c is found there are always two possible solutions, since the sine of an

angle the sine of its supplement. Some care is, therefore, necessary
in selecting the appropriate value from the two values determined by the

tables.

EXAMPLES FOE SOLUTION.

In all of these examples the earth is to be taken as a sphere of radius

3,960 miles.

1. Find the shortest distance measured along the earth's surface between

Mount Gambier (Longitude 140 45' E., Latitude 37 50' S.) and Palmerston

.(Longitude 130 50' E., Latitude 12 28' S.).

Ana. 1,856-8 miles.

2. Find the shortest distance measured along the earth's surface between

Baltimore (Lat. 39 17' N., Long. 76 37' AY.) and Cape Town (Lat. 33

.56' S., Long. 18 26' E.).

Ana. 7,893 miles.

3. How far would a place be due South from the equator if the altitude

of the S. celestial pole was exactly 20 ?

Ans. 1,382-3 miles.

4. Two places are in S. latitude 30, one longitude 115 E., and the other

35 E. Find the difference in the paths of the two ships sailing from one

port to the other, one along the parallel of latitude and the other along
the arc of the great circle joining the places.

Ans. 1,127 miles.

5. What is the declination of a star that passes through the zenith at a

place in latitude 35 N. ?

Ans. 35 North.

6. A ship sails along the great circle joining two places, each of latitude

45 N., the difference between their longitudes being 2 a. Show that the

highest latitude I reached during the passage is given by the formula
cot / = cos a.
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7. A ship from latitude 8 25' N. sails south for 600 miles. What latitude

is she in ?

Ant. l
c 35'S.

8. At a place in latitude / North, a star with decimation d rises 60 E,

of North. Show that cos I = 2 sin d.

The Figure of the Earth. If, as in Fig. 10, F and G
are two points on the same meridian, their difference of

latitude will be measured by the angle FOG. If we
know this angle, and also the length of the arc F G, we

Fig. 10.

shall then be able to calculate the length of the earth's

radius F 0. The difference of latitude between F and G
may be determined by astronomical observation, meas-

uring the altitude of the celestial pole at each place.
The length of the arc F G may be either directly measured
or it may be computed by means of a triangulation survey
from a measured base . line on some suitable adjacent

part of the earth's surface. Determinations of the radius

of the earth on these simple principles were made by the

Greeks 2,000 years ago.
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If the earth were a true sphere, measurements of the

radius of the earth made in this way at different parts

of its surface would be all the same. But when it became

possible to make the necessary observations with suffi-

cient precision it was found that such was not the case.

When Newton discovered and investigated the results

of the law of gravitation in the seventeenth century, he

proved that one consequence was that if the earth is a

plastic body, revolving on an axis and acted on by its

own attraction, it must take the form of a slightly flat-

tened sphere with its polar diameter less than its equatorial
diameter. Measurements of two arcs made by the Cassinis

in France seemed, on the other hand, to indicate that

the length of a degree of latitude decreased towards the

north, which would imply that the shape of the earth

was such that its polar diameter was greater than its

equatorial diameter, contrary to Newton's gravitational

theory. The French Academy equipped two expeditions
in order to settle the problem. One of these measured

an arc in the equatorial regions of Peru (1735-1741), and
the other an arc in the polar regions of Lapland (1736-

1737). The results showed that a degree of latitude was

longer in the polar regions than in parts near the equator,
and corroborated Newton's theory. Since then many
arcs have been measured in different parts of the world,
and the observations have conclusively established the

fact that the shape of the earth is not a true sphere,
but is very approximately an oblate spheroid, the figure
formed by revolving an ellipse about its minor axis.

The shape of the earth is thus like that of a sphere

slightly flattened at the poles. The amount of flattening
is not, however, very great. The length of the earth's

polar axis may be taken as 7,900 miles, and its equatorial
diameter as 7,927 miles. Thus if a model were made 20

feet in diameter, the polar diameter would be shorter than
the equatorial by a trifle over three-quarters of an inch.
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More exactly still, it is found that the change in the

length of a degree of latitude which takes place as we

proceed along a meridian is not the same along all meri-

dians. It seems that the equatorial section of the earth

is not exactly circular, but is very slightly elliptical.

The exact shape would thus appear to be more nearly
an ellipsoid. For practical purposes, however, all com-

putations in geodetic work are based upon the assumption
that the figure of the earth is an oblate spheroid.

Geographical and Geocentric Latitude. If in Fig. 11 P
represents some point on the meridian N Q S, N and

8 being the North and South Poles, then, making allowance

for the fact that the section N Q S E is not a circle but

an ellipse, the direction of the horizontal at P will not

be at right angles to P O, O being the earth's centre,

but will be in the direction of the tangent to the ellipse

at P. This is the direction taken by the surface of still

water at that point. .Consequently the direction of the

vertical there is not O P but G P, where G P is the normal

at P that is to say, it is at right angles to the tangent.

Thus, if we measure the latitude of P by astronomical
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methods, observing the altitude of the celestial pole
above the horizon at P, we shall measure the angle P G Q
and not the angle P O Q. The angle P G Q thus measures

what is called the geographical or geodetic latitude. This

is the ordinary latitude that is used for astronomical

and geodetic purposes.
It is clear, however, that the value of the angle P O Q>

if it can be readily determined, might be equally well

used in order to fix the position of P on the meridian.

This angle measures what is termed the geocentric latitude.

The difference between the geocentric and geographical
latitude of a place is never very great. There is no
difference at all, either at the poles or at the Equator,
and the maximum difference is in latitude 45, where it

amounts to about 11" 44" of arc. The geocentric latitude

cannot be directly observed. It is computed from the

geodetic latitude by the formula :

=~
When speaking of latitude in this book, it will always

be the geodetic latitude that is meant unless otherwise

specified.

EXAMPLES.

1. At a place in Lat. 42 S. a line is run from a point A on a bearing

of 220 for a distance of 2,400 chains to a point B.

Assuming the earth a sphere of 3,957 miles radius, find the bearing from

Bto A.
Ans. 40 15' 12".

2. Given that latitude of London is 51 32' N., latitude of Jerusalem

32 44' N., bearing of Jerusalem from London, 1 10 04'. Find the longitude

of Jerusalem, its distance from London, and the bearing of London from

Jerusalem.
Ans. Longitude, 37 25' 12" E.

Distance, 2,278 miles.

Bearing of London from

Jerusalem, 316 00' 16".

3
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3. The latitude of a Trig. Station A is 33 51' S., and its longitude is

151 12' 42" E. The bearing and distance to another Trig. Station B is

284 08' 44", 105,600 feet.

Compute the latitude and longitude of B, and the bearing of B to A,

on the assumption that the earth is a sphere with radius 20,890,790 feet.

Ans. Longitude, 151 28' 48" E.

Bearing, 104 56' 20".

4. Find the great-circle distance in English statute miles from Wellington.

N.Z., to Panama, treating the earth as a sphere, and one degree as equal
to 69 2V statute miles.

Wellington, . . Lat. 41 17' S., Long. 174 47' E.

Panama, . . Lat. 9 00' N., Long. 70 31' W.

Ans. 4,528-6 miles.

5. Two places are each in latitude 50 N., and their difference of longitude
is 47 36'. Find their distance apart.

Ans. 2,090 miles.
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CHAPTER IV.

THE SUN.

The Sun's Apparent Motion among the Stars. Like the fixed

stars, the sun shares in the apparent general daily rota-

tion of the heavens, but unlike them it does not always
maintain the same position relative to other objects on

the celestial sphere. In addition to its daily circling of

the sky, it appears to gradually shift its position with

respect to the stars. Neither its declination nor its right

ascension remain^constant . Very little consideration will

show that its declination must alter during the year,

for, if it did not, the sun would always describe the same

circle in the heavens. If this were the case, then, like

the fixed stars, it would always rise and set at the same

points on the horizon, and it would always attain the same

altitude when on the meridian. Since it does not do this,

it is clear that the declination of the sun must change

during the year. That the sun has also a movement in

right ascension among the stars is not quite so obvious,

but the fact may be readily inferred if we watch the stars

that are visible in the East on succeeding mornings just

before sunrise or in the West just after sunset. Stars

in the East that rise just before the sun, so that in a very
short time after rising they are masked by the sun's rays,
will pn each succeeding morning be seen for a longer
time. Similarly stars in the West, setting just after the

sun, will be visible for shorter and shorter periods as we
watch them on successive evenings until finally they are

lost altogether in the strong sunlight, other stars further

East taking their places. Hence we infer that the sun has
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a progressive movement among the stars from West to

East.

The problem of determining the sun's place on the

celestial sphere with regard to the fixed stars was a difficult

one to early astronomers, because as soon as the sun

becomes visible its strong light prevents the stars from

being observed at the same time. Some used the moon,
and Tycho Brahe used the bright planet Venus in order

to get the connection, observing the relative position
of the sun and moon or of the sun and Venus when both

were visible, and afterwards measuring the position of

the moon or Venus with regard to the stars when the

sun had set. But as both the moon and Venus also move

amongst the stars, the movement that had taken place
in the interval had to be allowed for, and the method
was thus not particularly simple. The sun's position is

nowadays determined by much more accurate methods.

The Earth's Orbit round the Sun. All of these move-
ments of the sun are apparent only and not real. Just

as its apparent daily rotation in the heavens is due to

the rotation of the earth on its axis, so the sun's apparent
movements in right ascension and declination are really

due to the fact that the earth moves in a great orbit

round the sun once a year.

Actually the earth moves round the sun in a path that

is very nearly a huge circle with a radius of about 96

millions of miles. More accurately, the path is described

as an ellipse, one focus of the ellipse being occupied by
the sun. The curve traced out by the centre of the earth

lies in a fixed plane that passes through the centre of the

sun. The earth traces out its complete orbit once a year,
and all the time it is spinning on its own axis once a day,
the direction of the spin on its axis being the same as

that in which it moves round the sun. The earth's axis

is not at right angles to the plane of its orbit, but it makes
with the plane a fixed invariable angle of 66 32J'. That
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the direction of the earth's axis is constant we know
from the fact that the position of the celestial pole amongst
the fixed stars shows no appreciable shift throughout
the year. Thus, as is illustrated in Fig. 12, the earth

moves round the sun, spinning on its axis, which is inclined

to the plane of the orbit, and the axis always remains

parallel to itself, pointing ever in the same direction

amongst the fixed stars, whose distances, it must be

remembered, are practically infinitely great even in com-

parison with the immense distance of the earth from

the sun.

When the earth is in the position marked 1, the sun will

be shining directly overhead in a place such as a North of

the equator. If e is a point on the earth's equator on
the same meridian of longitude as a, O being the earth's

centre, the angle a O e will be the complement of

66 32J' or 23 27|' that is to say, a will be a point on
the Tropic of Cancer. In this position, then, the sun
at mid-day will be vertically overhead at all points on
the Tropic of Cancer. This statement is not quite accurate,
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because the earth does not remain in the one position

in its orbit while it makes a complete revolution on its

axis
;

it is moving forward in its orbit all the time, but

as it takes a whole year to go round the sun, its relative

movement is not very great in one day.
As the earth moves from position 1 to position 2, its

axis always remaining parallel to its original direction,

it will be seen that the sun will appear to shine directly

overhead at points successively nearer and nearer to the

equator, until in position 2 the sun's rays fall vertically

at the equator.

Similarly, as the earth moves on to position 3, the sun's

rays will fall vertically at points further and further

south of the equator, until at position 3 the sun will

appear at mid-day to be overhead at a point on the

Tropic of Capricorn. From there on to position 4 the

sun will shine vertically at points successively nearer

to the equator, until at 4 the sun is once more overhead

at the equator.
The earth is in the position marked 1 on June 22nd,

hi that marked 2 on September 22nd, at 3 on December

22nd, and at 4 on March 21st.

Thus, if we consider the appearance of the sun to an

observer at some point P to the south of the Tropic of

Capricorn, on June 22nd the sun will appear to be further

from the zenith and lower down in the sky than at any
other period of the year. On December 22nd, when the

earth is in position 3, the sun at mid-day will be nearer

the zenith than at any other time of the year.

The orbit of the earth being an ellipse, its distance

from the sun is not constant. It is furthest from the

sun in the position 1, and nearest to the sun in the

position 3.

The Equinoxes. On March 21st and September 22nd,
the sun, being vertically overhead at the equator, will

appear to an observer at any part of the earth to be in
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the celestial equator. Now, we have seen that when

any heavenly body is in the celestial equator its path
is bisected by the horizon, so that the time during which

it can be seen in the sky is equal to the time during which

it is invisible. Thus, when the earth is in either of these

positions the days and nights are of equal length all over

the world. These points are consequently called the

Equinoxes.
Motion in Right Ascension and Declination. It thus appears

that on March 21st and September 22nd the sun's

declination is zero, as it lies on the Celestial Equator.
From March 21st to September 22nd it will appear in

the sky to the North of the equator, so that its declina-

tion will be north with a maximum value of 23 27|' on

June 22nd. From September 22nd to March 21st its

declination will be south with a similar maximum value

on December 22nd.

It is also evident that the sun's right ascension changes

throughout the year, because as the earth revolves round
it the apparent position of the sun among the fixed stars

must obviously change. The stars that would be seen

by an observer on the earth when in position 1, looking
in the direction of the sun, would be seen by an observer

at 3 when looking in the direction opposite to that of the

sun. Clearly, in the course of the year the sun will trace

out a complete circle among the fixed stars.

The declination and right ascension of the sun are given
in the Nautical Almanac for Greenwich noon on every

day of the year. The values at intermediate instants

may be found by interpolation. Illustrations of such

calculations are given in Chapter VIII. when dealing with

sun observations.

The Sun's Semi-Diameter. The disc of the sun sub-

tends at the eye of an observer an angle of about half a

degree. By accurately measuring the angle subtended

by diameters taken in different directions, we find that
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these are all equal, so that the disc is circular in form.

In order to mark the position that the sun occupies on

the celestial sphere at any time, we require to determine

the position of the centre of the circular disc. But there

is no mark at the centre that we can recognise, and so

in practice we must observe a point on the edge of the

sun and then make an allowance for the distance of this

point from the sun's centre.

From what we have just seen of the nature of the

earth's motion round the sun, it is clear that the sun

is not at all times of the year at the same distance from

us, and consequently we should not expect its diameter

to remain constant. As the earth completes its orbit

round the sun in a year and then goes over the same

path again, we might anticipate that the variations in

the value of the sun's apparent diameter would follow

a yearly cycle. This is found to be the case, a slow de-

crease taking place from the 31st of December to the

of July, and a slow increase during the second half

the year.

As the semi-diameter is frequently required in reducing
sun observations, the values are chronicled for every day
in the year in the Nautical Almanac (p. 11 of each month).
In the almanac for 1914 the maximum value of the semi-

diameter is given on January 3rd as 16' 17-55", and the

minimum on July 3rd as 15' 45 -38".

To Plot the Position of the Sun's Centre on the Celestial

Sphere. Supposing that we know the direction of the

true North and South, and also the latitude of the place
of observation, we may readily measure the declination

of the sun at mid-day. With a telescope pointed in the

direction of the meridian we may observe the altitude

of the sun's upper or. lower edges (limbs, as they are

usually called) at the moment when it crosses the meridian.

Making due allowance for the sun's semi-diameter, we
shall thus obtain the meridian altitude of the sun's centre.
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Thus, as in Fig. 13, if P represents the Pole, Z the zenith,

we measure either S x N or S 2 S, according as the sun is

in a position such as Si or as S 2 . Now, we have previously

shown that the altitude of the celestial pole, P N, is

equal to the latitude of the place. Thus, if the sun is

situated as at S15 on the same side of the zenith as the

pole, the difference between the observed altitude S x
N

and the latitude P N gives the sun's polar distance P S,.

If the sun is at S 2 ,
on the opposite side of thejzenith

to the pole, then the arc S 2 N is equal to 1802-^the observed

altitude S S 2 . The difference between S 2 N and the

latitude P N gives the sun's polar distance as before.

The declination of the sun is the complement of its

polar distance.

Fui. 13. /

Having measured the declination of the sun in this

way, in order to fix its position on the celestial sphere,
it only remains to determine the difference between its

right ascension and that of some star whose co-ordinates

are known. But we have seen that the difference of right

ascension of any two stars is measured by the interval

in time between their transits across the meridian, as

given by the sidereal clock. If, with the sidereal clock,

the times be measured when the first and second limbs

of the sun cross the meridian, the mean of the two times

will give the instant when the centre crosses the meridian.

If, therefore, the time of passage across the meridian of

some selected known star is also observed, the interval
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between the two times, reduced to degrees, will give
the difference between the right ascension of the sun

and the star.

These observations give us the elements necessary to

plot the position of the sun.

The Sun's Apparent Annual Path on the Celestial Sphere.

In Fig. 14, let A represent the position of the selected

fixed reference star as plotted on a globe representing
the celestial sphere, P being the Pole, Q R the great
circle of the equator, and S N the horizon. Then, if we

Fig. 14.

set out the angle A P B equal to the observed difference

of right ascension and measure off the arc P B equal
to the observed polar distance of the sun, the point B
will represent the position of the sun's centre on the star

globe.

When observations similar to those just described are

made day after day, and the corresponding positions

of the sun plotted on -the globe, those positions are all

found to lie on a great circle, which cuts the equator at

two opposite points <v and jfi in the figure, and is

inclined to it at an angle of about 23 27'.
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The great circle, the plane of which contains the sun's

yearly path, is called the ecliptic'l&nd the angle this makes

with the equator is spoken of/ as the obliquity of the ecliptic.

Its points of intersection with the equator are called

the equinoctial points, one (<) is known as the First Point

of Aries, and the other (^) as the First Point of Libra.

The sun is at the first of these points on about the

21st of March (the vernal equinox), and at the second on

the 23rd of September (the autumnal equinox), its decli-

nation being then and its polar distance 90.

As we have already seen,
< is the point selected on the

equator as that from which right ascensions are measured,
so that the right ascension of ^ is and that of -- 180.

At the two points on the ecliptic whose right ascensions

are respectively^ and 270, the sun will have its greatest

declination north and south of the equator. These are

known as the Solstitial Points. The sun reaches them
on or about the 22nd of June and the 22nd of December.

On June 22nd the sun has its greatest declination of about

23 27' north of the equator, and on December 22nd its

greatest declination south.

EXAMPLES.

1. Determine the meridian altitude of the sun at a place in latitude

30, (a) at the equinoxes, (6) during the summer solstice.

Ans. 60 and 83 27'.

2. Find the latitude of the place where the greatest altitude of the sun

in midsummer is 60. /
Ans. 53 27'.

3. At a place in lat. 80 N., on a certain day the sun at mid-day just-

appears above the horizon. Find the sun's declination. 'Find also the

altitude of the sun at mid-day when its declination is 20 N.

Ans. 10 S. and 30.
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CHAPTER V.

TIME.

Sidereal Time. To measure time we require some form

of perfectly uniform motion, and the most perfect motion

of this kind in the heavens is provided by the apparent
revolutions of the fixed stars. The earth turns on its

axis with absolutely regular speed and, as the stars are

so distant that the movement of the earth in its orbit

round the sun produces no apparent effect upon their

relative positions, the consequence is that the stars

complete a revolution round the celestial pole at a per-

fectly regular rate in a fixed and constant time. To the

astronomer, then, this presents the simplest way of

measuring time. The period of a complete revolution

of the stars round the pole is known as the sidereal day,
and time measured in this way is termed sidereal time.

Apparent Solar Time. Convenient as the above method
of measuring time is to the astronomer, it is obviously
unsuited to ordinary purposes of life. It is the day as

determined by the sun that controls our habits and rules

our lives. The apparent solar day, or period of time

between successive transits of the sun across the meridian,

is, however, variable in length, and it is impossible to

regulate a clock so that it shall indicate exactly 12 o'clock

just when the sun is in the meridian. The reason of this

may be seen from Fig. 15, which shows in an exaggerated

way the movement of the earth in its orbital revolution

round the sun. Suppose that, when the earth is in the

position marked 1, the sun is directly overhead to an
observer at A, and that, if it could be seen, the star F
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would appear in the same direction. As the earth revolves

on its axis it also travels forward in its orbit, so that

at the end of a sidereal day it is in the position marked 2!

If the observer has been carried round to the point B, so

that the same star F appears vertically overhead, the

star being at practically an infinite distance, B F will be

parallel to A F. The interval between these two positions

marks a sidereal day. But to bring the sun overhead,
to the same observer, he must wait till he is carried round
the extra distance B C. The solar day then will be longer

&.

Fig. 15.

than the sidereal day by the length of time required to-

traverse this extra distance. Whilst the sidereal day is

the time taken by the earth to make a complete revolu-

tion on its axis, the apparent solar day is the time taken

to make a little more than a revolution.

Now, the earth does not move in a circular but in an

elliptic orbit round the sun, so that sometimes it is nearer

to the sun than at others. When it is nearer to the sun
it is a deduction from the law of gravitation that it must
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travel faster in its path than when it is further away.
The result is that the extra little bit, B C, through which

fhe earth has to turn in the interval of time that has to

be added on to the sidereal day to give the apparent solar

day, is not always the same, and the apparent solar day
is thus not of constant length.

We have seen that the right ascensions of the fixed

stars are practically constant. But if a celestial body
were to move in right ascension its period of revolution

about the pole would still be constant, although not

the same as that of the stars, provided the movement
was a uniform one. The difficulty with the sun as a time-

keeper is that its motion in right ascension is variable.

Mean Time. The right ascension of the real sun

changes by 360 in the course of a year, but the rate of

change is not always the same. We might conceive of

an imaginary body travelling with the sun, so that its

right ascension changes by the same amount in the course

of the whole year, but having its motion in right ascension

perfectly uniform. Such an imaginary sun would form

a, perfect time-keeper, we could regulate our clocks to

mark noon when it should be on the meridian, and it

would have the great practical advantage that the time

so indicated would never be very far different from that

of the actual sun. This imaginary sun is termed the

mean sun, and the time indicated by it is called mean
solar time. The mean sun is pictured as moving along
the equator with uniform speed, so that its motion is

the average of that of the actual sun in right ascension.

A mean solar day is the interval between two successive

transits of the mean sun across the meridian.

The Three Systems of Time Measurements. There are

thus three kinds of time -to be considered.

1. Sidereal, as determined by the revolution of the stars.

2. Apparent solar, as measured by the actual sun or a

sun dial.
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3. Mean solar, which is the ordinary time kept by our

clocks.

The hour angle (Chap. II.) of the real sun gives the

apparent time or time indicated by a sun dial, and the

hour angle of the mean sun gives the mean time at that

instant.

Mean noon is the instant when the mean sun is on the

meridian. The mean time at any other instant is measured

by the hour angle of the mean sun reckoned westward

from hr. to 24 hrs. Thus the astronomical mean day
is usually divided into 24 hours instead of the two divisions

of 12 hours each in common use for civil purposes. As

the astronomical day starts at noon, both methods will

agree in the afternoon of each day, but not in the morning.

Thus, July 29th, 10 p.m., would be the same in both

the civil and astronomical methods of reckoning, but

July 29th, 10 a.m., Civil time, would be equivalent to

July 28th, 22 hrs., astronomical time.

Equation of Time. The difference between the mean
and the apparent solar time is known as The Equation of

Time. It is counted positive when the mean time exceeds

the apparent time, and negative when the apparent
time is greater than the mean. It is thus always the

amount that must be added to the apparent to obtain

the mean time. Thus we have

Mean Time = apparent Time + Equation of Time.

or Clock Time = sun dial Time + Equation of Time.

When the actual sun is on the meridian, the sun dial

will indicate hr. or noon. Hence

Equation of Time = mean Time of apparent noon.

The equation of time is thus positive if the sun is
"
after

the clock/' or the true sun transits after the mean sun.

Its values at both mean and apparent noon at Greenwich

are tabulated in the Nautical Almanac for every day in

the year.
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The equation of time vanishes four times a year, on
or about April 15th, June 15th, September 1st, and
December 24th. From December 24th till April 15th it

is positive, with a maximum value of about 14 min.

26 sec. on February llth. From April 15th to June 15th

it is negative, having its greatest value of about 3 min.

48 sec. on May 15th. From June 15th to September 1st

it is again positive with a maximum value of about

6 min. 19 sec. on July 27th. Between September 1st and
December 24th it is negative once more, attaining its

greatest negative value for the year, about 16 min. 21 sec.

on November 3rd. These dates are approximate only,
as they are not always precisely the same in different

years.
It will be seen on looking at the tabulated values of the

equation of time in the Nautical Almanac, that it is a

continuously varying quantity, its value commonly
changing by several seconds from one day to the next.

The tabulated values are for Greenwich noon, and con-

sequently if we wish to know the equation of time at some
other instant we must find its value by interpolation.

To facilitate this the Nautical Almanac gives the value

of the variation in one hour at each noon.

For example, the equation of time at Greenwich mean
noon on March 21st, 1913, is given as 7 min. 25-89 sec.,

and is diminishing from day to day. The variation in

one hour at noon on March 21st is 0-755 second. If,

then, we require the equation of time at 11 hrs. on March
21st (Greenwich time), all we have to do is to subtract

11 X 0-755 sec. from 7 min. 25-89 sec., giving, as the

equation of time at the required instant, 7 min. 17-59 sec.

If it is desired to make the computation with the

greatest precision, allowance must be made for the fact

that the rate of variation given is the rate at Greenwich

noon, and not the mean rate over the 11 hours. The rate

of variation at noon on the next day, March 22nd, is
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given as 0-760 sec., and, therefore, the rate of variation

Oil

5| hours after noon on March 21st is 0-755+ ~ x 0-005

= 0-756. This would more accurately represent the

mean rate of variation during the 11 hours, and the

required equation of time is, therefore, more accurately,

7 min. 25-89 sec.- 11 x 0-765= 17 min. 17-57 sec.

The more accurate procedure thus only makes a differ-

ence in the second place of decimals of a second, and the

simpler method given at first is good enough for most

purposes.

EXAMPLE. Find the equation of time at 5 hrs. 30 min. on February 25th,

the equation of time at noon being 13 min. 17-86 sec. and the variation

in one hour 0-395 sec.

Ans. 13 min. 15-69 sec.

Local Mean Time -The local mean time at any place
is reckoned by counting as hr. the instant when the

mean sun last crossed the meridian of the place. As the

earth rotates uniformly on its axis from West to East,

it follows that the further East a place is situated the sooner

will the sun cross the meridian, and, therefore, the later

will be the local time. All places on the same meridian

of longitude have their noons at the same instant, and,
as the earth turns, one meridian after another is brought

opposite to the sun. Thus, the interval of time between

the local noons at two different places will depend upon
their difference of longitude.
As the earth turns through 360 in 24 hours, it follows

that a difference of 15 of longitude corresponds to a

difference of 1 hour in time, 15' of arc corresponds to a

difference of 1 minute of time, and 15" of arc to a difference

of 1 second of time.

Thus, if we know the longitude and the local time at

one place A, we can readily compute the time at any
other place B whose longitude is given. We have only

4
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to convert the difference of longitude into time, at the

rate of 15 per hour, and add this to the time at A if B
is to the East, or subtract it if B is to the West from A.

EXAMPLE. If the longitude of A is 36 03' 37" E., and the local mean

time is September 5th 1 hr. 31 min. 17 sec., find the time at B in longitude

3 27' 13" E.

The difference of longitude = 32 36' 24".

To convert this into time, we simply have to divide by 15, giving us,

as the difference in time between the two places, 2 hrs. 10 min. 25-6 sec.

As B is to the West from A, this has to be subtracted from 1 hr. 31 min.

17 sec., giving us as the time at B, September 4th, 23 hrs. 20 min. 51-4 sec.

Should one longitude be East from Greenwich and the

other West, we must add them, instead of subtracting,
in order to get the angle between the meridians.

EXAMPLE. A ship sails from London on January 2nd at 1 p.m., and

arrives in Melbourne (longitude 145 E.) at 6 p.m. on February 8th. Find

the time occupied by the voyage.
Ans. 36 days 19 hrs. 20 min.

Local Sidereal Time. The local sidereal time at any
place is reckoned by counting as hr. the instant when
the First Point of Aries last crossed the meridian of the

place. Therefore, in precisely the same way, if we know
the longitudes of two places A and B and the local sidereal

time at A, we can compute the corresponding sidereal

time at B. For the earth turns on its axis through 360

relative to the fixed stars in 24 sidereal hours, and, there-

fore, a difference of longitude of 15 corresponds to a

difference of 1 hr. in the sidereal times. The method
to be used for finding the sidereal time at B is thus exactly
the same as that just illustrated.

EXAMPLE. If the sidereal time at A, long. 35 E is 12 hrs. 30 min., find

the sidereal time at the same instant at B, long. 27 \\ .

Ami, 8 hrs. -2-2 min.

Apparent Solar Times at the Same Instant at Places in

Different Longitudes. The equation of time or difference

fbetween apparent and mean times is the same all over
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the world at the same instant. Consequently the difference

between the apparent solar times at two places A and B
is precisely the same as the difference between the local

mean times. The same method again then can be used

to determine the apparent time at B, having given the

apparent time at A.

EXAMPLE. If the apparent solar time at A, long. 45 W. is 1 hr: 30 min.

and the equation of time is 6 min. 10 sec., to be added to apparent time,

find the corresponding mean time at B in longitude 10 W.

Ans. 3 hrs. 56 min. 10 sec.

Standard Time. To avoid the confusion arising from
the use of different local times in each town, most countries

now adopt the system of using the time on a particular meri-

dian through the country that lies an even number of hours

from Greenwich. The following table shows the standard

times adopted by the principal countries of the world :
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To Change Standard Time to Local Mean Time. This

problem has really been already discussed, for the differ-

ence between standard time and local mean time at any

place is that due to the difference of longitude between

the given place and the standard time meridian used.

For places East of the standard meridian local mean time

is later than standard time, and for places to the West

the local time is earlier.

EXAMPLES.

The standard time meridian in South Australia being 142 30' E., find

the local mean time at Adelaide (longitude 138 35' E.) when the standard

time is 8 hrs. 25 min. 10 sec.

Ans. 8 hrs. 9 min. 30 sec.

In New York State the standard time meridian is 75 W. If the local

mean time is 10 hrs. 17 min. 18 sec. at a place in the State, the longitude

of which is 73 58' W., find the standard time.

Ans. 10 hrs. 13 min. 10 sec.

To Reduce a Given Interval of Mean Time to Sidereal Time

and vice versa. It will be seen from the consideration

of Fig. 15 that in the course of its complete orbital

revolution round the sun the earth will make exactly
>one turn less with respect to the sun than it does with

respect to the fixed stars. There are approximately

365J mean solar days in the year, and, therefore, in the

same period there are 366J sidereal days. More exactly,

according to Bessel, the year contains 365-24222 solar

days, and hence 365-24222 solar days^- 366-24222 sidereal

days.

Therefore, if m be the measure of any interval in mean
time and s the corresponding measure in sidereal time,

ra_ 365-24222

*T~ 366 -24222*

Thus, if m be given, s can be found, or vice versa.

Tables to facilitate the reduction are Driven in the
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Nautical Almanac, and less elaborate ones in Chambers'

Mathematical Tables.

When tables are not used, the simplest way to make
the computation is as follows :

To convert an interval of mean solar time to sidereal

time, add 9-8565 seconds for each mean solar hour.

Dividing by 60, this gives us -1642 second to be added

for each minute and -0027 second for each second of

mean time.

Thus, to convert an interval of 6 hrs. 33 min. 17 sec.

of solar time into the equivalent interval of sidereal time,

we have

6x 9-8565= 59-139

33 x -1642= 5-418

17^x -0027- -046

64-603 seconds = 1 min. 4-6 sec.

The addition of this to the given solar time gives us

6 hrs. 34 min. 21-6 sec. as the equivalent sidereal

interval.

To convert an interval of sidereal time to the equivalent
interval of mean solar time, subtract 9-8296 seconds for

each sidereal hour. Dividing by 60 we get -1638 second

to be subtracted for each sidereal minute, or -0027 second

for each second.

Thus, to find the interval of solar time equivalent to

an interval of 6 hrs. 33 min. 17 sec. of sidereal time, we
have

6x 9-8296= 58-978

33 x -1638- 5-405

17 x -0027= -046

64 -429 seconds = 1 min. 4-43 sec.

Subtracting this from the given interval of sidereal
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time gives 6 hrs. 32 min. 12-57 sec. as the equivalent mean
time interval.

Given the Sidereal Time at Mean Noon at Greenwich on any

given Date to find the Local Sidereal Time at Local Mean Noon at

any other Place on the Same Date.

On page 11 for each month in the Nautical Almanac
the Greenwich sidereal times are tabulated for Greenwich

mean noon on each day. From these it is necessary,
in most work in which the time has to be brought into the

calculations, that we should be able to deduce the local

sidereal time at local mean noon on the corresponding

day at the place of observation.

In the succeeding pages it will be convenient to use the

following abbreviations :

G.M.T. to denote Greenwich mean Time.

G.S.T. Greenwich sidereal Time.

G.M.N. Greenwich mean noon.

L.M.T. Local mean Time.

L.S.T. ., Local sidereal Time.

L.M.N. ,, Local mean noon.

From what we have already done, it will be evident

that if we have two clocks, one set to keep sidereal time

and the other to keep mean time, the sidereal clock will

complete its day in a shorter period than the other, and

consequently will be continually gaining. According to

the last article, it will gain at the rate of 9-8565 seconds

for each solar hour.

Now, at a place in West Longitude, noon occurs a certain

number of hours after noon at Greenwich, the interval

depending upon the longitude. But the tabulated sidereal

time at Greenwich noon is the difference between the

readings of the sidereal and mean time clocks at that

instant. Consequently, by the time it becomes noon
at the place in question, the sidereal time will have gained
still further on the mean time clock at the rate of 9-8565
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seconds for each hour of longitude. Thus the L.S.T. at

L.M.N. will be greater than the G.S.T. at G.M.N. by an

amount computed at the rate of 9-8565 seconds for each

hour of West longitude.

Similarly, at a place in East Longitude, noon occurs

before the corresponding noon at Greenwich, and in this

case L.S.T. at L.M.N. will be less than the G.S.T. at

G.M.N. by an amount computed in the same way according
to the longitude.

EXAMPLE. On October 1st, 1914, the G.S.T. at G.M.N. is given in the

Nautical Almanac as 12 hrs. 37 min. 29-99 sec. Determine the L.S.T. at

L.M.N. (a) at a place in longitude 57 33' 28" West, (6) at a place in the same

longitude East.

(a) 57 33' 28" is equivalent to 3 hrs. 50 min. 13-87 sec.

3 x 9-8565 = 29-569

50 x 0-1642 = 8-210

13-87 x -0027 = -037

37-816, say 37-82 sees.

Therefore, for a place in West longitude we must add this on to the 12 hrs.

37 min. 29-99 sec., giving 12 hrs. 38 min. 07-81 sec. as the L.S.T. at L.M.N.

(6) If the place is in East longitude, we must subtract the 37-82 seconds,

giving 12 hrs. 36 min. 52-17 sec. as the L.S.T. at L.M.N. in that case.

EXAMPLE. On December 1st, 1914, the G.S.T. at G.M.N. is 16 hrs. 37 min.

59-89 sec. Compute (a) the G.S.T. at G.M.N. on December 2nd, (6) the

L.S.T. at a place in longitude 43 35' West at L.M.N. on December 1st.

Ans. (a) 16 hrs. 41 min. 56-45 sec.

(6) 16 hrs. 38 min. 28-52 sec.

Given the Local Mean Time at any Instant, to Determine the

Local Sidereal Time.

The local mean time gives us the interval measured in

solar hours, minutes, and seconds, that has elapsed since

local noon. We may readily turn this interval into

sidereal hours, and so obtain the number of sidereal

hours, minutes, and seconds that have elapsed since

noon. But in the preceding paragraph we have seen

how the L.S.T. at L.M.N. may be determined on any
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given date at a place in any longitude. Consequently
we have only to add to this the number of sidereal hours,

minutes, and seconds that have since elapsed, to deter-

mine the sidereal time at the instant. We. therefore,

proceed as follows :

1. From the tabulated G.S.T. of G.M.N. on the date

in question, compute the L.S.T. of L.M.N. by allowing
for difference in longitude.

2. Turn the given L.M.T. into sidereal hours, minutes,

and seconds, and add to the L.S.T. of L.M.N.

EXAMPLE. Find the sidereal time at Mount Hamilton

(Longitude 121 38' 43-35" West) on October 2nd, 1913,

the L.M.T. being 9 hrs. 17 min. 32 sec. p.m.

Dividing the longitude by 15, we get the difference in local times between

Mount Hamilton and Greenwich to be 8 hrs. 06 min. 34-89 sec.

The gain of the sidereal over the mean time clock in this interval, at the

rate of 9-8565 seconds per hour, is 1 min. 19-93 sec.

From the Nautical Almanac, we get G.S.T. at G.M.N. on October 2nd,

1913, 12 hrs. 42 min. 23-50 sec.

Add, . hr. 1 min. 19-93 sec.

L.S.T. at L.M.N., . 12 hrs. 43 min. 43-43 sec.

But 9 hrs. 17 min. 32 sec. of mean time,

when turned into sidereal time, . . 9 hrs. 19 min. 03-59 sec.

Therefore, L.S.T. required, . . . 22 hrs. 02 min. 47-02 sec.

EXAMPLE. Find the sidereal time at Adelaide (longitude
138 35' 04-5" E.) on October 2nd, 1913, the standard time

being 9 hrs. 17 min. 32 sec. p.m.

The standard time for South Australia is that of the meridian 142 or

9 hrs. 30 min. E.

Difference in local times between Adelaide and Greenwich = 9 hrs. 14 min.

20-3 sec.

The gain of the sidereal over the mean time clock in this interval at the

rate of 9-8565 seconds per hour is 1 min. 31-06 sec.

G.S.T. at G.M.N. on October 2nd, 1913, 12 hrs. 42 min. 23-50 sec.

Subtract, hr. 1 min. 31-06 sec.

L.S.T. at L.M.N 12 hrs. 40 min. 52-44 sec.
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The difference between local time and standard time is 15 min. 39-7 sec.

Therefore, the local mean time is . . 9 hrs. 01 min. 52-3 sec.

Turning the interval into sidereal time,

we get 9 hrs. 03 min. 21-31 sec.

Therefore, L.S.T. required, . 21 hrs. 44 min. 13-75 sec.

It is to be particularly noticed that the local mean
time must always be reckoned from noon when making
such calculations.

Thus, if the mean time is given as 9 hrs. a.m. on October

2nd, this must be reckoned as 21 hrs. October 1st, or

21 hrs. after noon on October 1st.

Given the Sidereal Time at a Place whose Longitude is known,
to Determine the corresponding Local Mean Time.

If we can find the sidereal time at m^an nnnn
1
then

by subtracting this from the given sidereal time we find

the number of sidereal hours, minutes, and seconds that

have elapsed since noon. Turning this interval of time

into mean time will give us the number of mean time

hours, minutes, and seconds since noon that is to say,
the mean local time required. The rules of procedure
are thus :

1. From the tabulated G.S.T. of G.M.N. on the date

in question, compute the L.S.T. of L.M.N. by allowing
for difference in longitude.

2. Subtract the L.S.T. of L.M.N. from the given sidereal

time. Turn the difference into mean solar time, and the

result will be the mean time required.
EXAMPLE. Given that the sidereal time at Mount Hamilton

is 22 hrs. 02 min. 47-02 sec. on October 2nd, 1913, the

longitude of the place being 121 38' 43-35" West, find the

corresponding local mean time.

As in the first example of the preceding section, we obtain L.S.T. at

L.M.N., 12 hrs. 43 min. 43-43 sec.

Given sidereal time, . . . .22 hrs. 02 min. 47-02 sec.

Difference, ... 9 hrs. 19 min. 03-59 sec.
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Turning this interval into mean solar time, by the aid of the tables,

we get 9 hrs. 17 min. 32 sec. as the L.M.T. required.

EXAMPLE. Given that the sidereal time at Adelaide

(longitude 138 35' 04-5" E.) is 21 hrs. 44 min. 13-75 sec.

on October 2nd, 1913, find the corresponding local mean

time.

As in the second example of the preceding section, we obtain L.S.T.

at L.M.N., 12 hrs. 40 min. 52-44 sec.

Given sidereal time 21 hrs. 44 min. 13-75 sec.

Difference, . . . 9 hrs. 03 min. 21-31 sec.

Turning this interval of sidereal time into mean time, we obtain 9 hrs.

01 min. 52-3 sec. as the L.M.T. required.

Alternative Method for Determining the L.S.T., having given

the L.M.T. In the preceding methods for computing
L.S.T. from L.M.T. or vice versa, it is necessary to first

of all compute the L.S.T. of L.M.N., and then to trans-

form another interval of time from mean to sidereal or

from sidereal to mean. In the methods about to be

described the theory is perhaps a little more complex,
but there is only one transformation of a time interval

necessary, so that the actual computation is a little

shorter.

From the given L.M.T., allowing for the difference of

longitude, we readily compute the corresponding mean
time at Greenwich. This gives us the interval in mean
time that has elapsed since the last Greenwich noon.

Turn this interval into sidereal time, and we get the

number of sidereal hours, minutes, and seconds that

have elapsed since the mean sun was last on the Green-

wich meridian.

But from the Nautical Almanac we get the G.S.T. at

the last G.M.N. Allowing for the difference in longitude,
we can thus obtain the L.S.T. at that instant. And as

we have already computed the interval in sidereal time
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that has since elapsed, we have only to add this on to the

L.S.T. at the preceding G.M.N. in order to get the sidereal

time required.

We thus get the following rules of procedure :

1. Allowing for the difference of longitude, compute
the mean time at Greenwich at the instant in question,
and turn the interval of mean time so found into sidereal

time.

2. From the Nautical Almanac obtain the G.S.T. at

the previous G.M.N.
,
and allowing for the difference of

longitude, determine the corresponding L.S.T. at the

same instant.

3. The addition of the results of 1 and 2 gives the

L.S.T. required.

As illustrations, for purposes of comparison, we will

take the same examples as those already worked.

EXAMPLE. Find the sidereal time at Mount Hamilton

(longitude 121 38' 43-35" West) on October 2nd, 1913, the

L.M.T. being 9 hrs. 17 min. 32 sec. p.m.

L.M.T. at Mount Hamilton, . . 9 hrs. 17 min. 32 sec.

Difference due to Longitude (W.), . 8 hrs. 06 min. 34-89 sec.

Corresponding G.M.T., . . .17 hrs. 24 min. 06-89 sec.

Turned into sidereal time, this is equivalent to 17 hrs. 26 min. 58-41 sec.

From the Nautical Almanac we get G.S.T. at G.M.N. on October 2nd,

1913, 12 hrs. 42 min. 23-50 sec.

Difference due to longitude 8 hrs. 06 min. 34-89 sec.

.-. L.S.T. at G.M.N., ... 4 hrs. 35 min. 48-61 sec.

Interval of sidereal time since elapsed . 17 hrs. 26 min. 58-41 sec.

.-. L.S.T. required, .... 22 hrs. 02 min. 47-02 sec.
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EXAMPLE. Find the sidereal time at Adelaide (longitude

138 35' 04-5" E.) on October 2nd, 1913, the standard

time being 9 hrs. 17 mm. 32 sec. p.m.

The standard time for South Australia is that of the meridian 142

or 9 hrs. 30 min. E.

Standard time at instant, . . . 9 hrs. 17 min. 32 sec.

Subtract difference due to longitude, . 9 hrs. 30 min. sec.

Corresponding G.M.T. on October 1st, . 23 hrs. 47 min. 32 sec.

Turning the interval into sidereal time we get 23 hrs. 51 min. 26-5 sec.

From the Nautical Almanac we find

G.S.T. at G.M.N. on October 1st, . . 12 hrs. 38 min. 26-95 see.

Difference due to longitude of Adelaide, 9 hrs. 14 min. 20-3 sec.

.-. L.S.T. at G.M.N. on October 1st, . 21 hrs. 52 min. 47-25 sec.

Interval of sidereal time since elapsed, . 23 hrs. 51 min. 26-5 sec.

.-. L.S.T. required, .... 21 hrs. 44 min. 13-75 sec.

Alternative Method for Determining the L.M.T., having given

the L.S.T. Knowing the longitude of the place, we
can compute the sidereal time at Greenwich at the same
instant. From the Nautical Almanac, as before, we get
the G.S.T. at the previous G.M.N. Subtracting these two
results gives us the interval in sidereal time that has

elapsed since Greenwich noon.

If we turn this interval into mean solar time, we, there-

fore, get the interval of mean time that has elapsed since

G.M.N. But the L.M.T. corresponding to G.M.N. is readily
determined by allowing for the difference of longitude.

Adding to this, therefore, the interval of mean time that

has since elapsed, we obtain the L.M.T. required.
The principal difficulty arises in places with East

longitude, where it may happen that the instant under

consideration really precedes noon on the same day at

Greenwich. This cannot happen with places having
West longitude. If this is the case, it will be at once
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noticed from the fact that the sidereal time at Greenwich

mean noon on the day in question, as found from the

Nautical Almanac, will be less than the computed Green-

wich sidereal time at the instant.

We thus get the following rules for determining the

L.M.T., having given the L.S.T. :

1. Allowing for the difference of longitude, compute the

G.S.T. at the instant in question.

2. From the Nautical Almanac find the G.S.T.

at the previous G.M.N. and then by subtraction

the number of sidereal hours that have elapsed
since. Turn this interval of sidereal time into mean
time.

3. Add this interval of mean time on to the L.M.T.

corresponding to G.M.N.
,
and the result is the L.M.T.

required.

EXAMPLE. Given that the sidereal time at Mount
Hamilton is 22 hrs. 02 min. 47-02 sec. on October 2nd>

1913, the longitude of the place being 121 38' 43-35" West,

find the corresponding L.M.T.

L.S.T. at Mount Hamilton, . . 22 hrs. 02 min. 47-02 sec.

Difference due to longitude (W.), . 8 hrs. 06 min. 34-89 sec

Corresponding G.S.T., . . . 30 hrs. 09 min. 21-91 sec

G.S.T. at G.M.N., October 2nd, 1913, . 12 hrs. 42 min. 23-50 sec.

Interval of sidereal time since G.M.N., . 17 hrs. 26 min. 58-41 sec.

Equivalent interval of mean time, . 17 hrs. 24 min. 06-89 sec.

L.M.T. corresponding to G.M.N., October

2nd = October 1st, . 15 hrs. 53 min. 25-11 sec.

.-. L.M.T. required = October 2nd, . 9 hrs. 17 min. 32 sec.
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EXAMPLE. Given that the sidereal time at Adelaide

(longitude 138 35' 04-5" E.) is 21 hrs. 44 min. 13-75 sec.

on October 2nd, 1913, find the corresponding L.M.T.

L.S.T. at Adelaide, . . . 21 hrs. 44 min. 13-75 sec.

Difference due to E. longitude, . . 9 hrs. 14 min. 20-30 sec.

Corresponding G.S.T., . 12 hrs. 29 min. 53-45 sec.

G.S.T. at G.M.N., October 2nd, 1913, . 12 hrs. 42 min. 23-50 sec.

Instant precedes G.M.N. by hr. 12 min. 30-05 sec.

Equivalent interval of mean time, . hr. 12 min. 28 sec.

L.M.T. corresponding to G.M.N., October,

2nd, 9 hrs. 14 min. 20-30 sec.

.-. L.M.T. required, . 9 hrs. 01 min. 52-3 sec.

In this case, since the instant precedes G.M.N., we must subtract the

computed interval of mean time from the L.M.T. corresponding to G.M.N.

Comparison of the Preceding Methods. As it is a most

important thing that the student should thoroughly

grasp the principles involved in the transference of time

from one system of time measurement to the other, it

is a good exercise for him to master both the first method

given and the alternative method in each of the preceding
cases. The first method, however, involves less thinking
and is more mechanical than the other, so that it is the

method generally adopted and the one probably most
suited for ordinary computations.

Determination of the Local Mean Time of Transit of a Known
Star across the Meridian. One very important application
of the preceding work is the calculation of the time of

transit of a known star across the meridian, or, as it is

commonly termed, the time of culmination.

The Nautical Almanac supplies us with a table of the

right ascensions and declinations of the principal stars

in the sky, and it has been shown in Chapter II. that

the R.A. of a star, expressed in time, is the sidereal time
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at the moment when the star is on the meridian. Thus

the problem is simply that of determining the' L.M.T.

corresponding to the sidereal time measured by the right

ascension of the star. This we may do by one of the

methods we have been considering.

EXAMPLE. Find the time of culmination of a Tricing.

Aust. on the evening of August llth, 1913, at a place in

South Australia whose longitude is 139 20' E., the time to

be measured in the standard time of the meridian 9 hrs.

30 min. E.

G.S.T. of G.M.N., August 17th, . . 9 hrs. 41 min. 02 sec.

.. L.S.T. of L.M.N. at place in longitude

139 20' E. computed as in previous

work, 9 hrs. 39 min. 30-45 sec.

R.A. of a Triang. Aust. = L.S.T. at time

of culmination, . . . .16 hrs. 39 min. 31 sec.

.. interval of sidereal time elapsed since

L.M.N. ,
7 hrs. 00 min. 00-55 sec.

Equivalent interval of mean time, . . 6 hrs. 58 min. 51-74 sec.

This, therefore, would be the L.M.T. at

time of culmination.

Difference between L.M.T. and time of the

standard meridian, hr. 12 min. 40 sec.

'. Standard time at culmination, . . 7 hrs. 11 min. 31-7 sec.

Time of Transit of the First Point of Aries. In the

preceding work we have adopted the usual practice of

effecting the change from sidereal to mean or vice versa

by means of the column in the Nautical Almanac giving
the G.S.T. at G.M.N. But on page 3 of each month there

is given another column tabulating for each day in the

year the G.M.T. of transit of the First Point of Aries,

which may also be used for similar transformation of time .

As this instant indicates the beginning of the sidereal

day, the column might be appropriately headed, the

G.M.T. at sidereal noon.
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Given the G.M.T. of Transit of the First Point of Aries, to

determine the L.M.T. of Transit at a Place in any other

Longitude.

The sidereal clock, as we have seen, is always gaining
on the clock keeping mean solar time, at the rate of

9-8565 seconds per mean solar hour, or at the rate of

9-8296 seconds for each sidereal hour. Now the G.M.T.

of transit of the First Point of Aries is the reading of the

mean time clock when the sidereal clock reads hr. It

is the difference between the readings of the two clocks

at this instant. As the sidereal clock is gaining on the

other this difference will get less as the time increases.

Now, at a place in West longitude the transit of the

First Point of Aries will take place after an interval of

time measured in sidereal hours, minutes, and seconds

by dividing the longitude by 15. Thus, when this transit

occurs the mean time clock will not be so far ahead of

the sidereal clock as it was at Greenwich, and the Green-

wich reading of the mean time clock will have to be

diminished by subtracting 9-8296 seconds for each hour

of longitude.
This reasoning assumes that, whilst different clocks at

various places on the earth's surface will have different

readings according to the longitude, the difference between

the readings of the sidereal and mean time clocks at any
place is the same all over the world at the same instant.

This must be so according to the reasoning by which

we have established the rules for determining the local

mean and sidereal times at a place A, having given those

at a place B. For we should alter both the sidereal and
mean times at B by the same amount, depending on the

difference of longitude between B and A, in order to

find the corresponding times at A.

Accordingly we get the Nautical Almanac rule for finding
from the tables the time of transit of the First Point of

Aries at any place.
"

If the place of observation be not
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on the meridian of Greenwich, the mean time must be

corrected by the subtraction of 9-8296 sec. for each hour

(and proportional parts for the minutes and seconds) of

longitude, if the place be to the West of Greenwich
;

but by its addition, if to the East/'

EXAMPLE. On August 1st, 1914, the G.M.T. of transit

of the First Point of Aries is 15 hrs. 20 min. 28-63 sec.

Compute the local time of transit on the same day (a) at a

place in longitude 57 33' 28" West, (b) at a place in the

same longitude East.

(a) 57 33' 28" is equivalent in time to 3 hrs. 50 min. 13-87 sec.

3 x 9-8296 - 29-488

50 x -1638 = 8-190

13-87 x -0027 - -037

37-715, say 37-72 seconds.

Therefore, for a place in West Longitude, we must subtract this from

the 15 hrs. 20 min. 28-63 sec., giving 15 hrs. 19 min. 50-91 sec. as the L.M.T.

of transit of the First Point of Aries.

(b) For a place in East Longitude we must add the 37-72 seconds, giving

15 hrs. 21 min. 06-35 sec. as the L.M.T. of transit in this case.

EXAMPLE. Given that the G.M.T. of transit of the First Point of Aries

on August 30th is 13 hrs. 26 min. 27-26 min. Find the G.M.T. of transit

on August 31st. Find also the local mean time of transit at a place in

longitude 45 W.
Ans. 13 hrs. 22 min. 31-35 sec.

and 13 hrs. 25 min. 57-77 sec.

Given the L.S.T. at any Place and the G.M.T. of Transit of

the First Point of Aries on the same day, to determine the L.M.T.

The local sidereal time measures the interval in sidereal

hours since the transit of the First Point of Aries over

that meridian. By turning this, therefore, into mean
time hours we get the interval since the transit in mean
time hours. But we have just seen how we may calculate

the L.M.T. of transit of the First Point of Aries from the

information in the Nautical Almanac. The addition of

the two results will give us the L.M.T. required. The rule

of procedure, therefore, may be expressed : Turn the

5



66 ASTRONOMY FOR SURVEYORS.

given sidereal time into mean time and add it on to the

computed L.M.T. of transit of the First Point of Aries.

As the transit of * may take place at any time of the

day, some care is necessary in selecting the right transit,

as is illustrated in the following example :

EXAMPLE. Given that the L.S.T. at Mount Hamilton

is 22 hrs. 02 min. 47-02 sec. on October 2nd, 1913, the

longitude of the place being 121 38' 43-35" West, find the

corresponding L.M.T.

Looking up in the Nautical Almanac the G.M.T. of transit of the First

Point of Aries on October 2nd we find it is 11 hrs. 15 min. 45-49 sec. This

is very near midnight, and the L.M.T. of transit will not be very different,

If we were to add 22 hours on to this it will clearly carry us over into the

next day, October 3rd, so that the transit we must select to work from,

is that on October 1st.

G.M.T. of transit of Y on October 1st, 11 hrs. 19 min. 41-39 sec.

Allowance for longitude, to be subtracted, hr. 1 min. 19-71 sec.

L.M.T. of transit of <y> on October 1st, 11 hrs. 18 min. 21-68 sec.

Mean time equivalent to 22 hrs. 02 min.

47-02 sec. sidereal, 21 hrs. 59 min. 10-32 sec.

.. L.M.T. required = October 2nd, . 9 hrs. 17 min. 32 sec.

Given the Sidereal Time at Mean Noon at Greenwich to compute
the Mean Time at the next Transit of the First Point of Aries.

The Nautical Almanac Columns, one giving the sidereal

time at mean noon and the other the mean time of transit

of the First Point of Aries, may readily be deduced one
from the other.

Thus, suppose the sidereal time at mean noon is denoted

by s. Then at noon s sidereal hours have elapsed since

<r> was on the meridian, and, therefore, in 24 s sidereal

hours *Y> will again be on the meridian.

If we express 24: s sidereal hours in mean solar

time, the result will clearly represent the number of

mean solar hours that have then elapsed since noon, and
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will consequently represent the mean time at the next

transit of <Y^ .

For example, on November 1st, 1913, the sidereal

time at Greenwich mean noon is 14 hrs. 40 min. 40-14 sec.

Subtracting this from 24 hours, we get 9 hrs. 19 min.

19-86 sec. Turning this into mean solar time, the result

is 9 hrs. 17 min. 48-23 sec., which, therefore, represents
the mean time at the next transit of <Y .

The converse problem may be dealt with in a similar

way.

EXAMPLE. On October 28th the G.S.T. at G.M.N. is 14 hrs. 23 min.

56-95 sec. Find the mean time of the next transit of W .

Ans. 9 hrs. 34 min. 28-67 sec.

Nautical Almanac Data with regard to Time. In the

Nautical Almanac on pages 1, 2, and 3 for each month,
various data are given that are useful in time computa-
tions. The sidereal time at Greenwich mean noon, the

mean time of transit of the First Point of Aries, and the

equation of time both for mean and apparent noon,
with its rate of variation, are given in each case for every

day in the year. In addition, the sun's right ascension

is given both for mean and apparent noon. These tabu-

lated results are not all independent, and it is good
practice for the student to take a Nautical Almanac
and deduce certain of the tabulated values from others

that are given. Here are a few of the exercises that may
be practised in this way.

1. From the sidereal time at mean noon on one day
compute its value for the next day.

2. From the sidereal time at mean noon find the mean
time of the next transit of the First Point of Aries.

3. From the mean time of transit of the First Point

of Aries determine the sidereal time at mean noon on the

same day.
4. From the R.A. of the sun at mean noon, and the
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equation of time, with their rates of variation, deduce

the sidereal time at mean noon, and the R.A. of the sun

at apparent noon.

5. From the sidereal time and the sun's R.A. at mean

noon, deduce the equation of time.

EXAMPLES.

1. Express in sidereal time the following intervals of mean solar time :

(1) 16 hrs. 15 min. 23 sec., (2) 9 hrs. 17 min. 18-4 sec., and (3) 17 hrs. 52 min.

33-5 sec.

Ans. (1) 16 hrs. 18 min. 3-2 sec.

(2) 9 hrs. 18 min. 49-95 sec.

(3) 17 hrs. 55 min. 29-69 sec.

2. Express in mean solar tune the following intervals of sidereal time :

(1) 13 hrs. 22 min. 17 sec., (2) 21 hrs. 35 min. 15-5 sec., and (3) 8 hrs. 55 min.

39-7 sec.

Ans. (1) 13 hrs. 20 min. 05-56 sec.

(2) 21 hrs. 31 min. 43-3 sec.

(3) 8 hrs. 54 min. 11 -94 sec.

3. In longitude 148 15' E., what is the local mean time corresponding
to September 22nd, 4 hrs. 30 min. p.m., standard time of the 150th meridian

East of Greenwich ? Find also the corresponding Greenwich mean time.

An*. (1) 4 hrs. 23 min. p.m.

(2) 6 hrs. 30 min. a.m.

4. Convert Perth apparent time, December 3rd, 4 hrs. 15 min. 20-3 sec.

to sidereal time ; also Perth sidereal time, December 3rd, 20 hrs. 26 min.

16-7 sec., to Western Australian standard time (Time of 120th meridian).

Given longitude of Perth, . . 7 hrs. 43 min. 21-7 sec. E.

Sidereal time as G.M.N., Dec. 3rd, . 16 hrs. 47 min. 32-0 sec.

Dec. 2nd, . 16 hrs. 43 min. 35-5 sec.

Equation of time G.M.N., Dec. 3rd, 10 min. 10-1 sec. to be added to

mean time.

Dec. 2nd, 10 min. 33-5 sec.

Ans. Sidereal time

20 hrs. 52 min. 03 sec.

L. Standand time

3 hrs. 56 min. 02-1 sec.
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5. Given that the sidereal time at Greenwich mean noon is 14 hrs. 40 min.

40-14 sec., find the mean time of the next transit of the First Point of

Aries.

Ana. 9 hrs. 17 min. 48-23 sec.

6. Given that the mean time of transit of the First Point of Aries at

Greenwich is 11 hrs. 19 min. 41-39 sec., compute the sidereal time at Green-

wich mean noon on the same day.
Ans. 12 hrs. 38 min. 26-95 sec.

7. The right ascension of a star being 20 hrs. 24 min. 13-72 sec., compute
the local mean time of its culmination at Madras (longitude 80 14' 19-5" E.)

on September 6th, the sidereal time at Greenwich mean noon on that date

being 11 hrs. 2 min. 21-45 sec.

Ans. 9 hrs. 21 min. 12-8 sec.

8. Convert 22 hrs. 22 min. 44-58 sec. sidereal time at Greenwich, January
20th, 1913, into mean time, given that the mean time of transit of the

First Point of Aries on January 19th is 4 hrs. 6 min. 14-36 sec.

Ans. 2 hrs. 25 min. 18-96 sec.

9. Find the mean local time corresponding to 5 hrs. 17 min. 32 sec. sidereal

time at Moscow (longitude 37 34' 15" E.), given that the sidereal time

of Greenwich mean noon on the same day was 23 hrs. 54 min. 52 sec.

Ans. 5 hrs. 22 min. 11 sec

10. Find the standard time of culmination of a Centauri at Adelaide

on June 1st, 1914, R.A. = 14 hrs. 33 min. 49 sec., longitude = 9 hrs. 14 min.

20-3 sec. Standard meridian 9 hrs. 30 min. E. G.S.T. at G.M.N. on the

same date 4 hrs. 36 min. 30-1 sec.

Ans. 10 hrs. 12 min. 51-3 sec.

1 1 . Find the local mean time of the transit of Crucis over the meridian,

at a place in longitude 11 hrs. 30 min. E. on the 10th May, 1913. Transit

First Point of Aries, G.M.T., 9th May, 20 hrs. 49 min. 48-44 sec. ; star's R.A.,

12 hrs. 10 min. 33-08 sec.

Ans. 9 hrs. 00 min. 14-9 sec.

12. The mean time of transit of the First Point of Aries for January
21st, 1911, is given in the Nautical Almanac as 4 hrs. 00 min. 24-79 sec.

For the same date the R.A. of a Leonis is given as 10 hrs. 03 min. 38-76 sec.

Find the exact local mean time when a Leonis passed the meridian of a

place in longitude 135 E.

Ans. 2 hrs. 03 min. 53-13 sec. a.m.,

Januarv 22nd.
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13. Compute the local sidereal time at noon by standard time at Adelaide

on October 24th, 1914, given

Longitude of Adelaide, .

Longitude of standard meridian,

G.S.T. at G.M.N., October 23rd,

9 hrs. 14 min. 20-30 sec. E.

9 hrs. 30 min. E.

. 14 hrs. 04 min. 14-18 sec.

Ans. 13 hrs. 50 min. 57-40 sec.

14. In the forenoon of August 1st, 1914, at Melbourne, longitude 9 hrs.

39 min. 54 sec. E., a mean time chronometer was compared with a sidereal

clock known to be 14-6 seconds fast on true local sidereal time. It was

found

Time by sidereal clock, .

Time by chronometer,

The data in the appended table is taken from the Nautical Almanac :

8 hrs. 18 min. 09-00 sec.

11 hrs. 41 min. 34-32 sec.

GREENWICH MEAN NOON.

Determine

(a) The sidereal time at Greenwich mean noon, August 1st.

(b) The R.A. of the sun at apparent noon, August 1st.

(c) The error of the mean time chronometer on Victorian Statute time

(meridian 10 hrs. E.).
Ans. (a) 8 hrs. 37 min. 0-16 sec.

(b) 8 hrs. 43 min.. 12-80 sec.

(c) hr*. 21 min. 04-05 sec. slow.
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CHAPTER VI.

THE LOCATION OF OBJECTS ON THE CELESTIAL
SPHERE.

IN order that the surveyor may pick out and observe

a particular star with a theodolite, it is frequently neces-

sary, more especially when he wishes to make the obser-

vation in daylight or evening twilight, that he should

know the altitude and azimuth of the star at the given
time. From the Nautical Almanac he obtains its right
ascension and declination, and from these data he has

to compute altitude and azimuth. In this chapter we
will deal with this problem and show how, given the

position of a star in one system of co-ordinates we may
determine its co-ordinates in another.

A . Knowing the Latitude and Time at the Place of Observation

and the Right Ascension and Declination of a particular Star, it is

required to determine its Altitude and Azimuth.

In Fig. 16, let P be the pole, S the star, Z the zenith,

A Z P B the plane of the meridian.

Draw the great circle through Z and S to intersect the

horizon in H.

If we know the local mean time we can compute the

corresponding sidereal time by the methods of the last

chapter. But we have seen that the right ascension of

the star is the same thing as the sidereal time at the

moment of the star's transit across the meridian. Con-

sequently the difference between the sidereal time at the

instant of observation and the right ascension of the

star gives the interval in sidereal time between the

moments of the star's transit across the meridian and of
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observation that is to say, it gives, when turned into

degrees, minutes and seconds, the hour angle of the

star S P Z. If the sidereal time at the moment of observa-

tion is less than the right ascension of the star, the differ-

ence measures the angle S P Z towards the East of the

meridian, if the right ascension is the less, the angle is

measured toward the West.

Thus, in the spherical triangle Z S P, we know Z P,

the complement of the latitude, and S P, the polar dis-

tance of the star which is the complement of the declin-

ation, and the included angle Z P S.

From these data we can compute the third side Z S,

Fig. 16.

which is the zenith distance of the star, or the com-

plement of the altitude, and the angle S Z P, which
determines the azimuth.

Calling the angles of the spherical triangle Z, P, and
S respectively, the formulae applicable to the solution

of a spherical triangle, having given two sides and the

included angle, are
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From these equations we compute the angles S and Z.

Then, to determine S Z, we have

sin P sin S P
sin SZ

sin Z

EXAMPLE. At a place in South Australia in longitude

9 hrs. 14 min. E., latitude 32 35' S., it is required to deter-

mine the altitude and azimuth of Achernar at 7 p.m. standard

time on December 1st, 1913. The R.A. of Achernar is

1 hr. 34 min. 33 sec., and its declination South is 57 40' 33".

The standard time of South Australia is that of the meridian 9 hrs. 30 min.

E.

The Greenwich time corresponding to 7 p.m. standard time on December

1st is thus 21 hrs. 30 min. on November 30th.

Therefore, the interval of time which has elapsed since Greenwich noon

on November 30th is 21 hrs. 30 min. of mean time, equivalent to 21 hrs.

33 min. 31-9 sec. of sidereal time.

From the Nautical Almanac, the sidereal time at Greenwich noon on

November 30th is . . . . . .16 hrs. 35 min. 0*3 sec.

Difference due to longitude, ... 9 hrs. 14 min. sec.

Local sidereal time at Greenwich noon. . 1 hr. 49 min. 0-3 sec.

Interval of sidereal time since elapsed. . . 21 hrs. 33 min. 31-9 sec.

Local sidereal time required, . . .23 hrs. 22 min. 32-2 seo.

This gives us the sidereal time at the instant of observation.

But the R.A. of Achernar is 1 hr. 34 min. 33 sec.

Thus Achernar lies 21 hrs. 47 min. 59-2 sec. to the West of the meridian,

or 2 hrs. 12 min. 0-8 sec. to the East.

Multiplying this by 15, we get the hour angle of the star as 33 0' 12"

to the East.

Referring now to Fig. 16, we have

Z P = co-latitude = 57 25'

P S = complement of declination = 32 19' 27"

P - 33 0' 12"

cos | (Z P - S P) = cos 12 32' 46-5", . . 9-9895036

cot P = cot 16 30' 6", . . 10-5283488

10-5178524

cos | (Z P + S P) = cos 44 52' 13-5", . . 9-8504650

tan |(S 4- Z), 10-6673874



74 ASTRONOMY FOR SURVEYORS.

.-. J (S + Z) = 77 51' 40".

sin i (Z P - S P) = sin 12 32' 46-5", . . 9-3369150

cot P = cot 16 30' 6", . . 10-5283488

9-8652638

sin (Z P + S P) = sin 44 52' 13-5", . . 9-8485005

tan | (S
-

Z), . . . . . 10-0167633

.-. (S
- Z) = 46 6' 20"

.-. Z = 31 45' 20".

Thus the star lies in the direction 31 45' 20" East of South.

To find its altitude,

sin P = sin 33 0' 12", .... 9-7361477

sin S P = sin 32 19' 27", . . 9-7281173

9-4642650

sin X = sin 3r 45' 20". 9-7212303

sin S Z, -. 9-7430347

... SZ = 33 36' 1".

Therefore, the altitude of the star is the complement of this, or 56
23' 59".

Very commonly for such calculations it is sufficient to compute the

position of the star to the nearest minute, and in that case five-figure log-

arithms are sufficient.

/> . Having observed the Altitude and Azimuth of a Star, the

Time of Observation being noted, it is required to determine its

Right Ascension and Declination.

The latitude and longitude of the place of observation

are supposed known.

Then in the figure, Z being the zenith point, P the pole,

and S the star, as before.

In the spherical triangle Z S P, Z P is known, being
the co-latitude

;
Z S, the zenith distance, is also known,

and the angle S Z P, which the vertical plane passing

through the star makes with the meridian.

Thus we know two sides and the included angle, and
the triangle may be solved to find S P and the angle
SPZ.
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The formulae to be used are those of the preceding

problem.

*1*#&$&3R

sinSP-

sin | (ZP+ZS)
sin Z . sin Z S

sinP
'

The angle S P Z, being turned into hours, minutes, and

seconds, at the rate of 15 for one hour, measures the

sidereal time that will elapse before S comes to the meri-

Fig. 17.

dian if S is to the East, or the interval of sidereal time

since S was on the meridian if it is to the West.

But the right ascension of the star is the sidereal time

when it is on the meridian.

Therefore, to obtain the right ascension of the star,

add the time value of the angle S P Z to the local sidereal

time at the moment of observation if the star is to the

East of the meridian, and subtract it if the star is to the

West.

The declination of the star is, of course, the complement
of the computed polar distance S P.



76 ASTRONOMY FOR SURVEYORS.

C. Having computed the Altitude and Azimuth of a Star for a

Given Time of Observation, it is required to determine its Approxi-

mate Position at some Short Interval of Time afterwards.

When a surveyor is preparing for daylight observations

of a star, it will be generally necessary for him to take at

least two readings of its position. To give him time to-

read the verniers and reverse the instrument before taking
the second observation, he requires to know the altitude

and azimuth of the star at an interval of five or ten

minutes after the first reading.
The computation for the second position may, of course,

be made in precisely the same way as we have already
done for the first, in which case several of the logarithms

already taken out will be useful for the calculation.

But it is rather shorter to make use of the following

formulae :

If x denotes the slight increase in the hour angle S P Z

(to be reckoned negative if the angle is decreasing), y
and z the corresponding small increases in the zenith

distance Z S, and the azimuth angle P Z S respectively.
Then

y= sin PS sin PSZ .x. . . (1)

cot^SZ^,
sinZS

The values of P S Z and Z S to be used in the equations

being those found in the first calculation.

To establish the formulae, let ABC (Fig. 18) be a

spherical triangle. Then if b and c remain unchanged,
we require to find the small changes y and z in a and B
respectively if the angle A is increased by a small amount
x.

By the ordinary formulae for spherical triangles we
have

cos a = cos b cos c -f- sin b sin c cos A
and cos (a + y) = cos b cos c + sin b sin c cos (A -f- x)
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Subtracting gives

cos a cos y sin a sin y cos a= sin b sin c

(cos A cos a: sin A sin x cos A).

Now, if x and y are very small, we can, if they are

measured in circular measure, replace sin x and sin y

by x and y respectively, and put cos x, cos y each equal
to unity. Doing this, we get

- y sin a = sin b sin c sin ^4 . #.

Putting sin c sin A = sin C sin a, this becomes

y = sin b sin C . #,
'

which is the first formula given.
Since we have here simply the ratio

of y to .r, the result will hold good in

whatever system of measurement y ,

and x are expressed, provided they
c
j

are both measured in the same system,
both in degrees or both in circular

measure.

Further, by the law of sines,

sin(B+z) sin (A -fa)

sin b sin (a+y)'

Expanding and substituting as before,
we get

(sin B + z cos B) (sin a + y cos a) = sin b (sin A -f x cos A)
and sin B . sin a = sin b . sin A.

.-. substracting, and neglecting the product of two
small quantities y and z,

z sin a cos B -f y cos a sin B = x sin b cos A.
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y
Putting x= . , .

-

sm b sin C

/cos A cos B cos C
z sin a cos B = y (

- sin B cos a
)

= y : ~ -

VsmC sm C

... z = y .
,
which is the second formula,

sin a

To illustrate the application of the formulae we will extend the scope

of the example already worked out in Section A of this Chapter, and

compute the position of Achernar 5 sidereal minutes after 7 p.m.

From the previous work the angle P S Z = 123 58', P S = 32 19',

Z S = 33 36'.

sin PS, . . . . . . . 9-72803

sinPSZ, . 9-91874

-44338, . 1-64677

In this example the hour angle of the star is measured to the East, and,

therefore, x is negative, and = 5 minutes of time = 1 15' of arc.

.-. y = - -44338 x 75' = - 33'.

.-. The new altitude is 56 24' + 33' = 56 57'.

cot P S Z. 9-82844

sin Z S, 9-74303

1-2173, . ... . 0-08541

and cot P S Z is negative, .-. z = 1-2173 x ( 33') = 40'.

.-. The new azimuth is 31 45' 40' = 31 5' East of South.

If results are only required to the nearest minute, the

above method is quite sufficient, provided the small

differences are not much more than 2 degrees of arc.

EXAMPLES.

1. Compute to the nearest minute of arc the altitude and azimuth of

Sinus (dec. = 16 35' South, R.A. = 6 hrs. 41 min.) at a place in latitude

31 57' South at 12 hrs. sidereal time.

Ans. Azimuth = 260 51'.

Altitude 17 12'.

2. Compute the* altitude and azimuth of Sirius 10 sidereal minutes later

than in I .

Ans. Azimuth = 259 38'

Altitude = 15 7'.
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3. At a place in latitude 28 South at 1 hr. 37 min. sidereal time, th

altitude of Canopus is observed as 33 3' and its azimuth as 136 44'. Com-

pute the R.A. and dec. of the star.

Ans. R.A. = 6 hrs. 21 min.

58 sec.

Dec. = 52 38' 48" S.

4. What is the angular distance between the stars A (R.A., 4 hrs. 23 min.

53 sec., Dec., 16 04' 25" N.) and B (R.A., 2 hrs. 54 min. 34 sec., dec., 40

08'03"N.)?
Ans. 30 54' 14".

5. Find the angular distance between A (R.A., 19 hrs. 42 min. 11 sec.,

dec., 8 23' 52" N.) and B (R.A., 22 hrs. 47 min. 41 sec., dec., 30 33'

17" N.).
Ana. 59 06' 04".

6. If the N. dec. of a star is 40, show that the number of hours in the

sidereal day during which it will be below the horizon of a place which has

latitude 30 N. is 8-136.
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CHAPTER VII.

ASTRONOMICAL AND INSTRUMENTAL CORREC-

TIONS TO OBSERVATIONS OF ALTITUDE
AND AZIMUTH.

Parallax. The fixed stars are so distant from us that

their directions always appear to be the same, no matter

from what point upon the earth's surface they are observed.

Even with our most refined instruments no difference can

be detected, because their distance is practically infinitely

great in comparison with the diameter of the earth. But
with the members of our own system, the sun, the moon,
and the planets, we are dealing with bodies incomparably
nearer to us, and their relative positions amongst the

fixed stars of the sky are not precisely the same when
viewed from different places. It is, therefore, essential

that their registered right ascensions and declinations

should be referred to some definite point upon the earth,

in order that they may be available to all observers.

The point selected is the earth's centre, because, having
observed the direction of a planet from any station on

the earth's surface, it is an easy matter to deduce its

position as it would appear at the earth's centre, and

conversely if the position of the star is tabulated as it

would be seen from the centre of the earth we may
readily find its position as seen from any place on the

earth's surface. The selection of the earth's centre as the

imaginary place of observation greatly simplifies the com-

putations, and consequently most astronomical obser-

vations of bodies in our own solar system are reduced
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so as to show what the result would be if the observation

could have been at the centre of the earth. The registered

right ascensions and declinations of the Nautical Almanac
are those the different bodies would have if viewed from
the earth's centre.

The difference between the directions of a heavenly

body as seen from the earth's centre and as seen from the

place of observation is known as its Parallax.
^

Thus, as in Fig. 19, if S is the sun or planet observed,

d ?

Fig. 19.

A the point of observation, and the earth's centre, the

parallax of the body is the angle A S 0, the difference

in the directions of A S and OS. If A H x is the direction

of the horizontal at A, the altitude of S is the angle S A H 1
.

If H 2 is drawn parallel to A Hj, then the difference of

the angles S O H 2 and S A Hj = the difference of the
6
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angles SOB and SAB which = the angle A S O.

Thus, if we call p the parallax, p= angle A S 0= S H 2

- S A Hj. Clearly the angle S H 2 is always greater

than the angle S A Hj.

If z denotes the zenith distance of S as observed from

A, r the earth's radius A, and d the distance S, then,

mn /7) Y

From the triangle A O S,
- = -

.

sin z d

If the body is observed on the horizon that is to say,

if z= 90 the corresponding value of p is called the

horizontal parallax. Call this P.

Then sin P =
*,.

d

Therefore, sin p= sin P . sin z.

Since p and P are very small, except in the case of the

moon, whose parallax sometimes exceeds 1, we may
substitute the angles for their sines and write

p= P sin z.

The horizontal parallax of the moon and principal

planets is given in the Nautical Almanac for every day
in the year, and that of the sun at intervals of 10 days.
The parallax for any other altitude is given by the above

simple formula.

Parallax is greatest when the body is in the horizon,

and diminishes with the altitude until it becomes nothing
when the body is in the zenith.

We see from Fig. 19 that the effect of the parallax

upon a celestial object is to make its altitude appear
less when observed from A than it would be if seen from

O. Consequently, when reducing observations to the

earth's centre, we must add the correction for parallax
observed to the altitude, or

True altitude = observed altitude -f parallax.
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Parallax has no effect upon the azimuth of an object
in the sky ;

the correction is made to altitude only.
This statement is strictly correct only when the earth

is regarded as a perfect sphere. If 'the spheroidal form
of the earth is taken into account there will be parallax
in azimuth as well as in altitude. Even then, however,
the correction in azimuth is too small to be worth con-

sidering except in the case of certain special lunar obser-

vations.

The horizontal parallax of the sun ranges between
8-65 and 8-95 seconds. At an altitude of 60 its parallax
is reduced to half of this.

Atmospheric Refraction.

When a ray of light passes
from one medium into a

denser medium as from air

into water or from air into A

glass, it is bent or refracted

towards the normal to the

bounding surface. Thus, as
//////////////?/;(//////////////

in Fig. 20, if a ray of light

passes from the medium A to

a denser medium B, travers-

ing the path P Q R, the re-

fracted ray Q R will always
make a smaller angle with

the normal to the separating
surface than the incident

ray P Q. The direction of bending is always such

that the bent or refracted ray lies in the same

plane as that passing through the incident ray P Q
and the normal Q N. The law governing the amount
of bending is that the ratio between the sines

of the angles P Q N and R Q M is constant for these

B

Fig. 20.
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particular media and the value of this ratio is known as

the coefficient of refraction.

Similarly, when a ray of light from a celestial body
reaches the atmosphere surrounding the earth, it is

bent slightly out of its original path. If the atmosphere
were a uniform homogeneous medium with a definite

upper surface it would be comparatively easy to deter-

mine the precise amount of bending of the ray. But the

density of the atmospheric air diminishes with the height

above the earth's surface. Consequently a ray from a

star S (Fig. 21), when it reaches the upper limit of the

Fig. 21.

earth's atmosphere at A, is only very slightly bent, but

the amount of bending gradually increases as it passes
into the lower and denser layers of air. Its path from A
to an observer on the earth's surface at is thus a curve,

and the ray ultimately reaches the observer, so that it

appears to him to come in the direction of S 1
. Thus,

the observer sees the star apparently at S 1 in the celestial

sphere, whereas in reality the star is at S. The effect is

that the star is apparently raised above its true position,
and its apparent altitude is greater than the true altitude
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if it could be observed from with no intervening atmo-

sphere. The observed altitude of a celestial body must,

therefore, be corrected in order to deduce its true altitude,

the correction being always subtracted from the observed

altitude. The amount of bending of the ray varies

somewhat with the pressure and temperature of the air,

but it is greatest for stars on the horizon, and gradually
decreases to nothing for a star in the zenith. For a body
on the horizon the mean value of the correction is 33'

that is to say, a star will be just visible on the horizon

when it is really 33' below it. Thus the sun, whose dia-

meter is about 32', is visible just above the horizon when
it is in reality just below it.

It will be seen from the figure, since the refracted ray

always lies in the plane containing the incident ray S A,

and the normal to the spherical bounding surface at A,
that S and S' will lie in the same plane as the vertical

at 0. This means that refraction produces its effect

entirely in altitude, and has no influence upon the apparent
azimuth of a heavenly body. Thus no correction in azi-

muth is necessary on account of refraction.

As we do not know the exact laws which govern the

pressure and temperature of the earth's atmosphere at

different heights, nor even the distance to which it extends

around the earth, no satisfactory computation of the

amount of refraction at different altitudes can be made
from theoretical considerations alone. By making different

assumptions as to the character of the earth's atmosphere
various formulae have been derived, but as their demon-

stration generally requires mathematics of a rather

advanced character, we shall not attempt the problem
here. In any case, as we cannot be sure of the correctness

of the assumptions that have to be made in order to

derive the formula, the values of the constants used have

to be obtained and checked from actual observations.

There are various ways by which the amount of refraction
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at different altitudes may be actually measured, and for

practical purposes that formula is selected which best

fits the results of such measurements.

The formula that has found most favour, and which

has been most used by astronomers for this purpose, is

that of Bessel,

r= A (B Z)
M TN cot a,

where a = the apparent altitude,

r= the amount of refraction in seconds of arc,

B, a factor depending on the height of the

barometer,

t, a factor depending on the reading of the

thermometer attached to the barometer,

T, a factor depending on the reading of a ther-

mometer so exposed as to give the

temperature of the external air.

A, M, and N are factors depending on the altitude of

the celestial body.

When suitable values are given to the different factors,

this formula can be made to fit in with the results of

actual observations on refraction with great precision,

and where great accuracy is required this is the formula

that is most generally adopted. To use the formula it

is, of course, put into the logarithmic form

log r= log A+ M (log B -f log t) + N log T + log cot a,

and the values of M, N, log A, log B, log t, and log T are

obtained from appropriate tables. Such a table is published
in Chambers' Mathematical Tables.

The constants M and N in the above formula do not

differ sensibly from unity if the altitude is considerable.

If these are taken each= 1, the formula may be put
into a form which makes the application of tables much

simpler. For the values of B, t, and T are each unity for

certain particular values of the barometric height, and
for certain special temperatures of the attached and
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unattached thermometers. Consequently for this par-
ticular condition of the atmosphere, which we may take

as the standard condition, we have r = A cot a.

If now we denote by r1 the amount of the refraction

for any other temperature and pressure, we have

^ = A . B t . T cot a,

... r1 ='BxtxTxr,
or refraction = the refraction for altitude a under the

standard or mean conditions multiplied by the factors

B, t, and T, depending on the height of the barometer

and the temperatures recorded by the attached and
unattached thermometers.

A table of refractions constructed for standard con-

ditions of the atmosphere is commonly termed a table of

mean refraction. With the aid of such a table and sub-

sidiary tables for B, t, and T, we may first of all find the

value of the
" mean refraction

"
for the measured altitude,

then pick out the values of B, t, and T for the particular
conditions of the atmosphere, and the true refraction

the mean refraction x B x t x T.

This is the method of determining the refraction most

commonly adopted for ordinary purposes, and gives accu-

rate enough results unless the altitude is very small. The

necessary tables are in Chambers' Mathematical Tables.

For many purposes, and more especially for high

altitudes, it is quite sufficiently accurate to use the value

of the refraction as given in the mean refraction table.

The refraction is always less than 1' if the altitude is greater
than 45, and for zenith distances up to 20 the refraction

is practically 1" per 1.

Corrections to Observations on Account of Residual

Instrumental Errors.

It forms no part of the purpose of this book
to enter upon a discussion of the construction of the

ordinary instruments of the surveyor and the methods
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of adjustment. These are matters dealt with in

text-books on Surveying. It will be assumed that the

reader is acquainted with the construction of the sur-

veyor's transit theodolite and with the usual methods

of securing its accurate adjustment. But even when
the adjustments have been made with great care, there

commonly remain certain residual errors which affect

the accuracy of the celestial observations, and must be

taken into account if the best results are to be obtained.

Of these, the two most important are, (1) an error due

to the fact that the line of collimation of the telescope is

not accurately at right angles to the transverse axis

about which the telescope turns, and (2) an error produced
if this transverse axis is not absolutely horizontal. We
will consider the effect of each of these in turn.

The Effect of an Error of Gollimination. Let us suppose
that the line of collimation of the telescope, instead of

being accurately at right angles to the axis about which

the telescope turns, is in error by a small angle c
;
that

is to say, the telescope makes an angle 90 c on one

side and 90 -fc on the other side with the axis. On

turning the telescope about the transverse axis, which is

adjusted so as to be horizontal, the line of collimation

would, if in accurate adjustment, trace out a vertical

plane passing through the zenith. But if in error, and the

line of collimation is not at right angles to the axis, then,

as it is plunged up and down, it will trace out a conical

surface and on the celestial sphere it will trace out a

circle parallel to a vertical circle through the zenith.

Thus, as in Fig. 22, if there were no collimation error the

line of collimation of the telescope would trace out the

great circle Z S' N, but if in error it will sweep out the

parallel small circle L S M. Now, suppose that the star

S is observed in such a telescope, and let S S' be an arc

of a great circle drawn at right angles to Z N. S S' = N M
= c the collimation error.
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If we draw the great circle arc Z S, then Z S is the

true. zenith distance of the star. But the observed zenith

distance is Z S'. Similarly the correct azimuth is measured

by the angle H Z S, whereas the azimuth as read on the

instrument is H Z S'.

In the right-angled triangle S S' Z, S S' being denoted

by c, we have

cos S Z = cos S' Z cos c.

If c is very small, as should be the case if the instrument

is in decent adjustment, we may take cos c= 1, and,

therefore, practically S' Z = S Z, or no correction will

N M
Fig. 22.

usually be necessary to the observed zenith distance or

altitude.

Also, denoting by Z the angle S Z S', the error in

azimuth, we have

sin c = sin S Z . sin Z,

and since c and Z are both small, we may write

Z = c . cosec S Z,

or the error in azimuth = the collimation error multiplied

by the cosecant of the zenith distance.

The error in azimuth thus becomes very great if the

star is near the zenith, but is= c for a star on the horizon.
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The following table shows the way in which the error

varies with the altitude of the star :

Error in Azimuth corresponding to a Collimation

Error c for Various Altitudes of Object.

Altitude of Star, 30 60 70 80 85 89

Error in azimuth, c M5c 2c 2-92c 5-76c ll-47c 57-3c

The Elimination of Instrumental Errors by Changing Face.

Although we have in the preceding paragraph investi-

gated the effect of a given collimation error, it is very
seldom that the surveyor will need to take this error

into account, because in all important work the observa-

tions are taken in such a way as to eliminate its effects.

This is done by observing each angle twice, with the

vertical circle or face alternately to the left and to the

right. After the angle has been read once the telescope
is reversed in direction by turning about its horizontal

axis, and the whole of the upper part of the theodolite

is turned through 180 until the first object is again

sighted, and the angle is again read with the instrument

in this reversed position. The operation is commonly
referred to as

"
changing face/' and should be adopted

in all theodolite observations, as it gives a means both

effectual and simple of eliminating the chief instrumental

errors. An error in collimation will not affect the hori-

zontal angle between two objects if both are at the same

altitude, but if the altitudes are different, then if the

collimation error makes the measured angle a little too

great when the vertical circle is facing the left it will make
it just as much too small when the vertical circle faces

the right, and thus the "mean of the two readings gives
the correct result.

Now, when measuring the azimuth of a star, we have to

sight the telescope to a moving object, and it is not possible,

therefore, to exactly repeat the measurement because in
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the interval of time taken in changing face the position

of the star is slightly changed. But it is characteristic

of all the more accurate methods of astronomical measure-

ment suitable for the surveyor, that reliance is never

placed upon one observation, but the methods are so

arranged that a series of observations can be made at

short intervals, the face of the instrument being alter-

nately changed from right to left, so that a mean may be

obtained from which instrumental errors are largely

eliminated.

The Error made if the Transverse Axis of the Telescope is

not truly Horizontal. This error, just as that due to

collimation with which we have just dealt, may also

M
Fig. 23.

be largely eliminated by the method of changing face.

But in this case the elimination is not so perfect, and as

it is an easy matter by means of a striding level to actually
measure the departure of the axis from the horizontal

at each observation, it is frequently desirable to observe

the error and allow for it in the computation.
If the axis of the telescope is not truly horizontal, the

line of collimation, when the telescope is turned about

the axis, will not trace out a great circle in the sky passing

through the zenith, as it should do, but will trace out a

great circle inclined to the vertical. Thus in Fig. 23,

if N Z N1 denotes the great circle that would be traced
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out in the celestial sphere if the axis were horizontal,

N S N 1 denotes the circle actually traced out if the axis

is inclined at a small angle a. Let S be a star observed

with this telescope, and draw the great circle Z S M passing

through the zenith and the star.

The angle Z N S = a.

The actual observed altitude of the star is measured

by the arc N S, whereas the true altitude is given by
the arc M S.

Again, the azimuth of the star is actually measured

on the circle of the horizon from the point N, whereas

it should be measured from the point M. So that the error

in azimuth is the angular measure of the arc M N.

In the right-angled triangle N S M, the angle S N M
= 90 a. Therefore, by Napier's rules, we have

sin N M = tan a . tan M S,

or, since both N M and a are small,

NM= a. tan MS.

That is to say, the error in azimuth = the error in level

multiplied by the tangent of the altitude of the star.

Again, by Napier's rules,

sin M S = sin N S . cos a,

and since a is small and cos a may be taken = 1
,
it follows

that we may take M S = N S, which means that no

appreciable correction has to be made to altitude. The
error produced is practically in azimuth only.

The error in azimuth increases with the altitude of

the star. It is zero on the horizon, becomes = a for an

altitude of 45, and is very great for stars near the zenith.

Error in Azimuth corresponding to a Level Error a in the

Axis for Various Altitudes of Object.

Altitude of star, 30 45 60 70 80 85 89

Error in azimuth, 0-58a a l-73a 2-75a 5-67a ll-43a 57-3a
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Determination of the Level Error of the Axis by means of

the Striding Level. In order to make practical applica-

tion of the correction just investigated, it is necessary

to actually measure the level error of the transverse axis

of the theodolite for each observation. This is readily

done by means of the striding level, a very sensitive

spirit level supported by two legs with V bearings at

the bottom, which can rest upon each end of the trans-

verse axis of the theodolite. The tube of the level is

marked off in divisions, the values of which are known

or may be readily determined by test. The graduations
read outwards from the centre towards both ends. To

eliminate errors of construction the readings should be

taken in pairs, the striding level being read first in one

position and then reversed on its bearings with each

observation. Both ends of the bubble are read on each

Fig. 24.

occasion, the observer standing so as to face the direction

in which the instrument is pointed. He reads first the

left-hand end, then the right, then reverses the level and

reads again.

Suppose, as in Fig. 24, the bubble extends from A to B,

being the centre of the graduations and C the middle

point of the bubble.

Then C B = half the length of the bubble

O_A+ B

OB-0 A
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This, therefore, measures the deflection of the centre

of the bubble from its normal position, and, when

multiplied by the value of 1 division of the level,

gives the angular measure of the deflection from the

horizontal.

Suppose that the readings of the left-hand and right-

hand ends of the bubble are l and r respectively before

reversal and 12 and r 2 after reversal of the level on its

bearings. Then, according to the first reading, the error

I- i\
of the axis is

,
and according to the second reading

^2 ^2
. Thus the mean determination is

We thus get the following rule, for finding the error in

level of the horizontal axis, after a series of striding

level readings taken in this way. Add up the left-hand

readings. Add up the right-hand readings. Subtract

the two sums and divide by the total number of readings.

The result is to be multiplied by the value of the level

graduation in seconds of arc.

If the striding level were perfect in construction, then

the reading obtained on reversal should be the same as

Zj Y-, In To

that given previously. should = . Any

difference is due to an error in the striding level, and is

^qual to twice the striding level error. Thus the error

of the striding level itself-
**
~ r*-( l*- r

*\

For example, if the left-hand readings of the bubble

of the striding level are 6-3 and 4-8, the corresponding

right-hand readings being 5-2 -and 6-8, we proceed as

follows :
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L. R.

6-3 5-2

4-8 6-8

11-1 12-0

11-1

4) 0-9

0-22

Therefore, if one division on the level corresponds to

14" inclination, the angle the axis makes with the hori-

zontal is 0-22 x 14= 3-1".

In this case the sum of the readings to the right is

greater than the sum of the readings to the left, and,

therefore, the right-hand end of the axis is the higher.
This would mean that the azimuth of a star (measured
from the North towards the right) would appear to be

greater than it really is, and the correction to be made
would consequently have to be subtracted. If the left-

hand end of the axis were the higher the correction to

-azimuth would have to be added.

If the preceding readings were taken with the striding
level on the transverse axis of a theodolite when a star

was being observed at an elevation of 42 33' and the

azimuth reading was 127 33' 10", the correction to be

made to azimuth would be 3. 1 x tan 42 33' = 3-1 x -918

=2-8", and the corrected azimuth would be 127 33' 7-2".

Allowance for Error of Alidade Level. In most modern
theodolites intended for astronomical observations, no
level is attached to the telescope itself, but instead a deli-

cate level, known as the alidade level, is attached to the

vernier or microscope arms of the vertical circle, and the

circle turns with the telescope so that when the telescope
is horizontal the verniers are at zero.

With this form of instrument, when reading vertical

-angles, each reading should be repeated by changing
the face of the instrument, and to allow for any slight
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departure from true horizontality in the setting of the

theodolite, the alidade level should be read on each occa-

sion. In this case the readings of the two ends of the bubble

are commonly referred to as and E, according as they
are at the object or eye end of the telescope.

The principle involved is exactly the same as that of

the striding level just described. The error in level will

be found by dividing the difference between the sums

of the readings of the object end and eye end by the total

number of readings, and then multiplying the result

by the angular value of one division of the scale of the

spirit level. If the readings of the object end are greater
than those of the eye end, then the zero line is pointing

slightly upwards, and the correction must be added on

to the observed altitude. If the readings of the eye end

are the greater, then the correction is to be subtracted .

So that

E
Correction to altitude -\

- X value of

1 division.
number of readlng8

Thus, suppose that two observations are taken, one

with the face of the instrument to the left and the other

with face right, as follows :

0. E.

F. L. 5 9

F. R.
J7 _7
"12 ~i6

12

4 p4
~T

Thus, if the angular value of one division on the level

is 14", it will follow that the altitude measured must be

reduced by this amount.

Clearly this correction applies to vertical angles only,

and does not affect the measurement of horizontal angles.
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CHAPTER VIII.

THE DETERMINATION OF TRUE MERIDIAN.

THE determination by observation of a true North and
South line is a very important and common operation
for the surveyor, and there are many ways in which it

may be done. In practice, however, preference is given
to such methods as will allow a set of observations to be

taken so that instrumental errors may be eliminated,

some readings being taken with F.R. (face right) and
others with F.L. (face left), and also to such methods
as do not require too great an interval of time between

the observations. There is an objection to methods
which require stars to be sighted at an interval of several

hours, not only on the score of practical convenience,
but because the atmospheric refraction may have changed

considerably in the time that has elapsed. We shall

confine our attention to the principal methods in actual

use.

Referring Mark. When determining the azimuth of

a star or other celestial object, it is necessary to have a

referring mark whose azimuth may be measured with

respect to that of the star, so that the true direction

may be found of a fixed reference object. It is commonly
indicated in field notes by the letters R.M. It is highly
desirable that there should be no need to refocus the

telescope after pointing it to a heavenly body and then

directing it to the referring mark, and this requires that

the referring mark should be where practicable about a

mile away. When stellar observations are being taken

the referring mark should be made to imitate the light
7
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of a star as nearly as possible. This may be done with

a bull's eye lantern placed in a box or behind a screen,

through which a small circular hole is cut to admit the

light to the observer. The face of the screen may be

painted with stripes, so that it may be readily observable

in the day time. If the referring mark is not to appear

larger than a star in the field of view of the telescope,

the diameter of the hole must not be more than about

a third of an inch at a distance of one mile. Some observers

prefer a narrow vertical slit in the screen, and others use

a larger hole with two cross wires at right angles to each

other.

Fig. 25.

First Method By Equal Altitudes of a Circumpolar Star.

To mark out a true North and South line, we have

to determine the direction of the celestial pole, and the

simplest method is probably that of observing a circum-

polar star at equal altitudes. No calculations are necessary,
and no knowledge of the latitude, longitude, or local time

is required by the observer.

If the circle in Fig. 25 represents the circular path of a

star round the pole, the problem is to determine the
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direction of the centre P of this circle. Suppose that the

star is observed at S, and then, keeping the angle of

elevation of the telescope unchanged, the observer waits

until he sees the star again at H at the same altitude.

Clearly the point L, midway between S and H, will be

vertically above the pole P, and all that the observer

has to do to get his true meridian is to bisect the angle
between S and H. Nothing could be simpler in principle,

but certain precautions are necessary to get accurate

results.

In the first place, when fixing either the points S or H,
we are really marking the point of intersection of the

horizontal line with the circle. Now, we can fix the

intersecting point of two lines most accurately when the

two lines are at right angles, and so the best position

for the line S H is when it passes somewhere near P.

As the star takes 24 sidereal hours to complete its circle

round the pole, this would mean that the second obser-

vation would be made about 12 hours after the first. This

would be often impossible and generally inconvenient.

It, on the other hand, the line S H is taken too near the

top of the circle, the star is moving so rapidly in a hori-

zontal direction that it is not possible to secure good
intersections.

Two simple observations at S and H, such as we have

just described, would not be sufficient to enable instru-

mental errors to be eliminated, and so in practice a set

of at least four observations are made, as illustrated in

Fig. 26. They will be made somewhat as follows : Set

the instrument to zero and point to the R.M. Point to

the star in the position S t , measuring the horizontal

angle between S, and the R.M., and noting also the

altitude of S,. Then change the face of the instrument

and point again to the star, which will by this time be

at S 2 . Again note horizontal angle and altitude. Keeping
the telescope clamped at the same vertical angle, unclamp
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the upper plate and move the telescope round, waiting

until the star is again seen in the position S 3 . When
the star is got into the field of view of the telescope, the

upper plate is again clamped and the star followed by
means of the tangent screw until it again coincides with

the centre of the cross wires. Having read the horizontal

angle, the face of the instrument is again changed, the

altitude of the telescope is again set to the reading at S 1?

and the star is again followed until at S 4 it once more is

Fig. 26.

hi the centre of the field. Finally, the telescope is pointed
to the R.M.

The direction midway between S 2 and S 3 should, of

course, if there are no errors, coincide with that midway
between S x and S 4 . This will not usually be the case,

but the mean of the two results is taken and instrumental

errors are largely eliminated.

If a, b, c, and d be the angles which S 1? S 2 ,
S 8 ,

and S 4

make with the R.M., then if the R.M. be outside the angle
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subtended by S x S 4 at the observer's eye, the angle tHat

the R.M. makes with the true meridian will be

+ c+d

If, on the other hand, the direction of the R.M. lies

between Sj and S 4 , the angle will be

a + b (c + d)

The reason of this difference will be seen from Fig. 27,

where P represents the true meridian bisecting the

P

angle between Sj and O S 4 . If the referring mark is in

such a position as M1? outside the angle S x S 4 ,
the sum

of the angles M x O Sj and Mj O S 4 is double the angle

Mj O P. But if the referring mark is in such a position
as M 2 , within the angle S 2

O S 4 ,
the difference of the

angles M2 O S, and M2 O S 4 is double the angle M2 P.

The polar distances of the stars are not absolutely

constant, as the theory of the method assumes, but

undergo very slight changes during the year, which are

tabulated in the Nautical Almanac. In the course of

24 hours, however, the alteration never amounts to more
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than a "small fraction of a second of arc, and, therefore,

need not be considered.

An unknown error may be introduced by changes in

the atmospheric refraction during the considerable in-

terval of time that must separate the first and second

sets of observations. The method will give results quite

sufficiently accurate, however, for the ordinary purposes
of the surveyor, it may be carried out without the use

of mathematical tables or Nautical Almanac, and it

involves no knowledge of the position of the observer.

Its great practical disadvantage is the length of time

over which the observations must extend, and to carry
them out the surveyor must be up for the greater part
of the night. Consequently other more convenient

methods are usually favoured by surveyors.

Second Method By a Circumpolar Star at Elongation.

In Fig. 28, let P be the celestial pole, Z the zenith

of the observer, W, S, and E the West, South, and

East points respectively on the circle of the horizon, or

the West, North, and East points according as the observer

is in the Southern or Northern Hemisphere. The small

circle with P as centre represents the path of a circum-

polar star A. The vertical plane passing through the

zenith of the observer and the star traces out the circle

Z A B on the celestial sphere. This will be the circle
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swept out by the telescope of a theodolite when the

telescope, after being directed to the star, is turned in a

vertical plane about its transverse axis. As the star moves

from the position shown in the figure this vertical plane
will make a greater and greater angle with the plane of

the meridian Z P S until the star arrives at the position

H, where the vertical circle Z H K, swept out by the

telescope, is a tangent to the circular path of the star.

This is the point where the vertical plane containing the

star makes its greatest angle with the plane of the meridian.

At this point the star is said to be at elongation, and,

clearly, its motion being then vertical, it is in a favourable

position for observations upon its azimuth, because its

horizontal movement is so slight for some time before

and after it arrives at H. There will be a corresponding

point H' in the path of the star to the West of the celestial

pole, and the points H and H' are referred to as the

points of Eastern and Western elongation respectively.

It is clear from the figure that the points H and H'

will always be at a greater altitude than the celestial

pole P, but the smaller the circle of the star's path or the

greater the declination of the star, the more nearly will

the altitude of H and H' approach that of P.

Now, if a Nautical Almanac star is selected for obser-

vation, we shall know its declination, and the polar distance

P H is the complement of the declination. If, in addition,

we know the latitude of the place of observation, then,

in the right-angled spherical triangle Z P H, we shall

know P H and Z P, which is the complement of the

latitude. Hence, by Napier's rules, we can compute the

angle P Z H. We have

Sin P H = sin Z P sin P Z H
or Sin P Z H= cos declination x sec. latitude.

This calculation gives us the angle that the star at H
makes with the meridian. Hence, if we measure the
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angles that the star at H makes with some referring

mark, the azimuth of the R.M. is determined.

The method so far indicated would require the direction

of the star to be measured at the exact moment of elonga-

tion. But we have set it down as a general principle

that at least two observations should be made, one with

F.L. and the other with F.R., and it bcomes important
to enquire what error in azimuth will be made if sufficient

time is taken to obtain two readings.

On making the necessary calculations, it will be found

that, for a place in latitude 30, the azimuths of stars

at different polar distances will not alter by 5" after the

moment of elongation until the following times have

elapsed :

Polar Distance Time after Moment of Elongation
of Star. before Azimuth changes by 5".

10, 3 min. 33 sec.

15, 3 min. 7 sec.

20, 2 min. 35 sec.

30, 2 min. 11 sec.

As there will be a corresponding and nearly equal

period before elongation, it follows that for a star whose

polar distance is 10 there will be a total time of about

7 minutes during which its motion is so nearly vertical

that the total change of azimuth in that period is not

more than 5". For a star whose polar distance is 30,
the corresponding period is 4^ minutes.

If, then, the surveyor, as will commonly be the case

in ordinary work, is not seeking to determine the true

meridian nearer than within 20", it will be quite suffi-

ciently accurate to take two observations of the star, one

with F.L. and the other with F.R., not at the exact moment
of elongation, but one jus.t before and the other probably
just after elongation. The time required to read both

verniers, reverse face, and set the telescope again on the

star should not be more than three or four minutes, so

that there should be time to get both observations within



THE DETERMINATION OF TRUE MERIDIAN. 105

the period we have just calculated during which the

azimuth of the star does not alter by 5". The nearer the

star is to the pole the greater the length of time available

for the observations.

The average value of the angle that the star makes

with the meridian, as determined by two observations

in this way, is clearly always a little less than the angle

at elongation. In order to get the most accurate results

with this method, it is better not to use the formula for

the star at elongation at all, but to get a careful set of

four observations of the star near elongation, observing
the altitude of the star at each measurement. In Fig. 29,

let A represent the star moving in its circular path round

the pole P, Z the zenith, Z A B the vertical circle passing

through the zenith and the star. Then, in the triangle

Z P A, if the altitude of the star is measured, the values

of Z A (90- the altitude) and ZP (the co-latitude) and

P A (the polar distance of the star) are known. If

P A= p= polar distance of star,

P Z= c= co-latitude,

Z A = z = zenith distance,

s= (p+ c+z),

sin | P Z A ysin
(s-

-i

-
z) sin (s c)

sin z sin c

or log sin \ P Z A = J [log sin (s z) -f log sin (s c)

+ log cosec z -f log cosec c
}

.
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Such a set of observations should be made in the

following order : Point to R.M., point to star, reading-

altitude and horizontal angle, reverse face, and point

to star again. Turn back to R.M. and read angle. Then

another pair of observations are made in the same way.
The mean of the first two observations and the mean of

the second two are then used as the data for two separate

computations of the azimuth of the R.M. by means of

the formula we have just given. The average of the two

results, if the work is carefully done, will give a very
accurate determination. This is the method recom-

mended in the Hand Book of Instruction for Western

Australian Surveyors. An example is given a little further

on.

A more convenient method for reducing any number
of observations taken near to elongation is given at the

end of this chapter.
Calculation of the Time of Elongation. In order to

prepare for these observations, it will generally be neces-

sary for the surveyor to work out beforehand the time

at which the star will elongate. In Fig. 28 the angle
Z P H measures, when turned into time, the sidereal

time that must elapse before the star at H comes on to

the meridian. But when the star is on the meridian the

sidereal time is given by the R.A. of the star. Thus the

sidereal time when the star is at H is= the R.A. of the

star the hour angle of the star Z P H. This sidereal

time has then to be turned into mean time by the methods
we have previously discussed.

EXAMPLE. To find the time of Eastern elongation of /?
Centauri on April

IQth, 1914, at a place in 8. lot. 31, longitude 135 E.

R.A. of
/? Centauri, .

"

. .13 hrs. 57 min. 47-7 sec.

Dec. of p Centauri, . . .59 57' 43-8" S.

We first of all find the time of culmination, the local sidereal time at

that instant beinir irivt-n by the R.A. of the star. Thus at culmination
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Local sidereal time,

Corresponding Greenwich sidereal

time, . ...
Sidereal time at G.M.N., April 10th,

13 hrs. 57 min. 47-7 sec.

4 hrs. 57 min. 47-7 sec.

Ihr. 11 min. 29-19 sec.

Interval in sidereal time after Green-

wich noon, ....
Interval in mean time after Greenwich

noon, .....
Local time corresponding to G.M.N.,

April 10th,

. . Local mean time at culmination,

We have now to find the time from elongation to culmination, which

will be measured (Fig. 28) by the angle Z P H. .From the right-angled

triangle Z P H in that figure we have

cos Z P H = tan P H . cot Z P = cot dec. X tan lat.

cot dec. = cot 59 57' 43-8", . . 9-7621015

tan lat. = tan 31
C

,
9-7787737

3 hrs. 46 min. 18-5 sec.

3 hrs. 45 min. 41-4 sec.

9 hrs. min. sec.

12 hrs. 45 min. 41-4 sec.

cos 69 40' 10", . . . 9-5408752

.-. angle Z P H = 4 hrs. 38 min. 40-66 sec. sidereal time = 4 hrs. 37 min.

55 sec. mean time.

.-. time of Eastern elongation = 12 hrs. 45 min. 41-4 sec. 4 hrs. 37 min.

55 sec. = 8 hrs. 7 min. 46-4 sec., April 10th.

Time of Western elongation = 12 hrs. 45 min. 41-4 sec. -f 4 hrs. 37 min.

55 sec. = 17 hrs. 23 min. 36-4 sec., April 10th, or 5 hrs. 23 min. 36-4 sec.

a.m. on April llth.

Z

Azimuth, Altitude, and Hour-Angle at Elongation. In

Fig. 30, if P denotes the celestial pole, Z the zenith of

the observer, and H a star at elongation. In the right-
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angled triangle Z P H we have Z P = the co-latitude,

P H = the star's polar distance or the complement of

the declination, the angle Z P H = the hour angle of the

star, P Z H = the azimuth of the star if P is the North

celestial pole or the supplement of the azimuth if P is

the South celestial pole. Z H = the star's zenith distance

or the complement of the altitude. Hence we have the

following relations :

cos Z P H = cot dec. x tan lat.

sin P Z H = cos dec. x sec lat.

sin altitude = cosec dec. x sin lat.

EXAMPLE OF OBSERVATION OF STAR AT ELONGATION FOR AZIMUTH.

Star Canopus. Date June 26th, 1914.

R.A.6 22' 01 -07". Place Survey Office Tower, Adelaide.

Declination 52 38' 48". Latitude 34 55' 38".

R.M. taken Obelisk on Mt. Lofty.

Computed approximate Standard Time of W. elongation, 4 hrs. 14 min.

OBSERVATIONS.

Mean angle between star and R.M., 109 34' 52". R.M. to East of Star.

CALCULATION.

Formula. Sin A = cos declination x sec latitude.

log cos dec., 9-7829945

log sec lat., . . 10-0862497

log sin A, ."

A from South,

Azimuth of Star, .

Angle between R.M. and Star,

Bearing of R.M., .

9-8692442

47 44'

227 44'

109 34' 52"

1 18 09' 08"
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COMPUTATION FOR AZIMUTH.

Mean azimuth of R.M., 11 8 08' 41".

CALCULATION OF TIME OF ELONGATION.

G.S.T. of G.M.N., June 27th, 1914,

Allowance for longitude,

L.S.T. of L.M.N.,

R.A. of Canopus or L.S.T. of Culmina-

tion, . ...
Sidereal interval since L.M.N.,

Converted to mean solar time,

Correction to standard time,

Standard time of Culmination,

6 hrs. 19 min. 0-63 sees.

1 min. 31-06 sees.

6 hrs. 17 min. 29-57 sec.

6 hrs. 22 min. 01-07 sec.

4 min. 31-50 sec.

4 min. 30-75 sec.

15 min. 40 sec.

12 hrs. 20 min. 10-75 sec. p.m.
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cos hour angle at elongation = cot dec. X tan lat.

L cot dec. (52 38' 47-25") =.9-8826803

L tan lat. (34 55' 38") = 9-8440521

9-7267324
.-. hour angle = 57 47' 28"

equivalent to . .3 hrs. 51 min. 9-87 sec. sidereal interval

or 3 hrs. 50 min. 32 sec. mean time interval

subtract from . . 12 hrs. 20 min. 10-75 sec.

giving . . .8 hrs. 29 min. 38-75 sec. a.m. as the standard time of

the Eastern elongation.

The Effect of an Error in the Latitude. In the preceding
calculations we require to know the declination of the

star and the latitude of the place. The declination of

the star is given by the Nautical Almanac, but it is possible

that the latitude may not be known with the same degree
of precision. In Fig. 30, we have

sin Z cos I = cos d, . .
(
1

)

where I latitude, d= declination, Z= angle P Z H.

Suppose that a small change y in the latitude produces
an alteration x in the azimuth Z. d remaining unaltered.

Then sin (Z+ x) cos (l-\- y) cos d.

Expand each of these terms, remembering that x and

y are small, so that sin x, sin y may be replaced by x and

y respectively, and cos x, cos y by unity. We then get

(sin Z -+- x cos Z) (cos / y sin /)
= cos d.

Subtracting (1) from this equation and neglecting the

term involving the product of x and y

x cos Z cos I y sin Z sin /= o,

or x y tan / tan Z

sin Z= y tan I

V(l-sin 2
Z)

cosd= y tan I
- from

(
1
)

V(cos
2

Z cos a
d)
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Thus x o if l=o, and x = QC if /= d. I cannot be

greater than d, because if so Z P is les^ than P H (Fig. 30 ),

and the formulae would not apply. For such a star there

is no position of greatest elongation, as the azimuth of

the star during its revolution completes the circle of the

compass. If 1= d, the path of the star passes through
the zenith.

The following table gives the values of the error in

azimuth compared to the error in latitude, as calculated

by the preceding formula, for various values of / and d.

RATIO or ERROR ix AZIMUTH TO SMALL ERROR ix LATITUDE.

In the cases tabulated an error in latitude of, say r

5" will produce an error in azimuth of less than 5", the

tabulated ratios being all less than 1 . The error in azimuth

may, however, be much greater than the error in latitude,

if the star observed has a declination approaching the

value of the latitude.

In any given latitude, the error is least when the star

selected is nearest to the pole. From the formula, x= o

if d= 90. This and other considerations, as we have

seen, all point to the desirableness of selecting a star for

observation as near to the celestial pole as possible.

Star Observations in Daylight. It is often a very great
convenience to the surveyor to be able to make his obser-

vations for meridian in, the day time. The method that

we have just described of taking observations on a star

at or near elongation may be used perfectly well in day-

light, provided that a sufficiently bright star is selected.

Such work is done most easily in the late afternoon.



THE DETERMINATION OF TRUE MERIDIAN. 113

The following are suitable stars for such daylight obser-

vations in the Southern Hemisphere :

a Argus (Canopus), a Eridani (Achernar),
a 2 Centauri, ft Centauri, a1 Crucis.

As these stars cannot be seen with the naked eye in

daylight, it is necessary to compute the position of the

one selected for observation before directing the tele-

scope to it. The time of elongation may be computed
by the method already discussed, and the azimuth and
altitude of the star at elongation determined by the

formulae given. When these calculations are made the

star may be readily picked up.
To select the most suitable star, compute roughly the

sidereal time when it is desired to make the observations.

A star must be selected which culminates some 4 or 5 hours

before or after this. That is to pay, the star chosen must
have a right ascension some 4 or 5 hours greater or less

than the computed sidereal time.

Fig. 31.

Third Method Extra-Meridian Observations on Sun or Star.

Suppose, in Fig. 31, that S denotes any heavenly body
which moves in a circle round the celestial pole P.

Let Z be the zenith of the observer. Then if the altitude

of S is observed at any instant, and if in addition we
know the latitude of the place and the declination of the

celestial body, then in the spherical triangle P Z S we
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know the three sides S Z= z = 90 altitude, PZ=c
= 90 latitude, P S = p = 90 declination. Conse -

quently, we can determine the angle Z which the vertical

plane through S makes with the true meridian.

If we write s = | (p-\- c-\- z), then

/si= *Jv
sin (s- z) ,sin( c)

sin = *J . -T ,

sin 2 . sm c

/sin s . sin (5 p)
or cos

sm z . sin c

from which

log sin | Z= | {log sin (s z) + log sin (s c) + log

cosec s -f- log cosec
c[ ,

and similarly for the second formula.

A more detailed discussion of these formulae is given
in the account of extra-meridian observations for time.

The method may be applied either to a star or to the

sun, but for the sun we require a little more information

than in the case of a star. To solve the spherical triangle

we must know both the latitude of the place and the

declination of the celestial object. In the case of a star

we can get the declination from the Nautical Almanac,
and as the declination changes very slightly through-
out the year, we only require to know the approximate
date of the observation in order to get the declination as

accurately as is necessary. But, with the sun, the declina-

tion changes very rapidly, and in the Nautical Almanac
its value is given at Greenwich mean noon for every day
in the year. In order to obtain the decimation at any
other instant, we must know the Greenwich time at the

moment in question, and this means that we must know
both the local mean time and the longitude. An error of

one minute in the time may produce an error of 1" in

the sun's declination. With the sun, therefore, the time

of observation must be noted as well as the altitude.
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The method is also well suited for daylight observations

upon stars, as the very brightest stars are available for

this class of observation. Sirius (magnitude 1-4) is a

very suitable star.

If the observation is made in the Northern Hemisphere
and S is to the East of the meridian, the angle P Z S is

the azimuth of the celestial body. If S is to the West

of the meridian, the azimuth == 360 P Z S.

If the observer is in the Southern Hemisphere, then the

azimuth = 180-PZS or 1SO+PZS, according as S

is to the East or to the West of the meridian.

Extra Meridian Observations of a Star. At least two

measurements of the altitude and the horizontal angle

made with the R.M. should be taken, one with the F.L.

and the other with F.R. Since the mean refraction for

objects at an altitude of 45 is 57", it is necessary to

correct for refraction in the measurement of the altitude.

As the proper correction for refraction is somewhat

uncertain for stars anywhere near the horizon, the star

selected for observation should have an altitude of at

least 30. The order of procedure should be as follows :

Point the telescope to the R.M.

Turn the upper part of the instrument round so as to

direct the telescope to the sta*r, reading both verniers

on the horizontal circle. Measure also the altitude of the

star.

Reverse the face of the instrument.

Again point telescope to star, measuring horizontal

angle and altitude.

Turn the upper part of the instrument, this time in the

reverse direction, until the telescope points to the R.M.

In the interval between the two pointings to the star

it will have moved considerably in altitude. If we average
the two altitudes and with the value so obtained solve

for Z by the formula given, the result will give us the

azimuth corresponding to this mean altitude, but that is
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not exactly the same thing as the mean of the azimuths

in the two observed positions. Provided, however, that

the difference in altitude of the star at the two observa-

tions is not more than one or two degrees, the error thus

made is so slight that it is not worth considering.
When the observations are to be made upon a bright

star in the day time, it will be necessary, first of all, to

compute the azimuth and altitude of the star for the time

of the first observation in the manner explained and
illustrated in Chapter VI. The azimuth and altitude

5 or 10 minutes later may then be deduced, as shown in

the same chapter.
Extra Meridian Observations upon the Sun. The sun,

being an object of large size in the field of view of the

telescope, cannot be observed in the same way as the

234-
Fig. 32.

stars. The observer must sight to its edge, and in this

case, wh#re both horizontal angle and altitude are to be

measured, it may be sighted in any one of the four quad-

rants formed by the cross wires of the telescope. The

four different positions in which it may be observed are

shown in Fig. 32, the two cross wires at right angles

being brought by means of the tangent screws so as to just

touch the sun's edge in each case. The centre of the sun's

disc is the point considered in all our computations, and

this then is the point whose position we seek to determine.

Clearly, the centre of the cross wires is midway between

the centres of the sun discs in positions 1 and 3, so that

the mean of the readings in these two positions should

give us the altitude and azimuth of the sun's centre.
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Similarly the mean of the readings in positions 2 and 4

will give the position of the sun's centre. A complete
set of observations will consist of four observations of

the sun in the four positions illustrated. They should be

made as follows :

Take reading of R.M. and clamp horizontal plate.

Turn to the sun and observe altitude and horizontal

reading with the sun in quadrant 1 of the cross-wire

system.

Then, as quickly as possible, by means of the two

tangent screws, bring the sun into quadrant 3 of the

cross wires, and again read horizontal angles and altitude.

Turn back to the R.M.

Reverse the face of the instrument and take two more
observations in precisely the same way, but this time

with the sun in quadrants 2 and 4.

Be careful to note the time of each observation.

During the whole time occupied by the four observa-

tions the sun's position will have changed too much for

accurate results to be obtained by averaging the measured
altitudes and times of the four observations. There

should, however, be very little time lost between the

first two readings, with the sun in quadrants 1 and 3,

and the measured altitudes and times of these two may
be averaged together and a computation made for the

corresponding azimuth of the referring mark. Similarly,
another computation is made, by averaging the readings
with the sun in quadrants 2 and 4, from which the azimuth

of the referring mark is again determined. Thus we
obtain two computed azimuths, one with each face of

the instrument, and the average of the two is taken.

The two succeeding observations made without change
of face in quadrants 1 and 3 or quadrants 2 and 4 are

sometimes a little simplified by what is known as the
"
run through

"
method. In this method the observer,

after making the first observation, leaves the telescope
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clamped in vertical arc, and makes the second observation

when the sun has just crossed the horizontal wire by moving
the vertical wire to the correct position, with the aid of

the tangent screw attached to the horizontal circle. The

necessity of recording a second set of vertical angles is

thus avoided. The objection to this method is that the

two observations cannot be made in such quick succession

as is possible by the method outlined above, and conse-

quently the error made by taking the average of the two
observations is greater.

Very commonly only two observations of the sun are

made, and in that case the best procedure is as follows :

1. Observe the R.M., say, with face L. 2. Observe the

sun in, say, quadrant 1 with face L. 3. Reverse face and1234
Fig. 32a.

observe the sun again as quickly as possible with face

R. in quadrant 3. 4. Observe R.M. again with face R,

The average of the two observations is then taken as the

basis of a single computation.
Should the telescope have its cross wires of the form

shown in Fig. 32a, the observations will be precisely the

same, but the various positions of the sun's image will be

as illustrated.

For good work the altitude readings should always be

corrected by means of the alidade level, reading the E.

and O. ends at each observation.

Computation ol Sun's Declination from Nautical Almanac

Data. In the Nautical Almanac the sun's declination is

given for both mean and apparent noon at Greenwich,
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for every day of the year, and also its rate of variation in

one hour at Greenwich noon. If the declination is required

at, say, 8 hours after Greenwich noon, it will not be accu-

rately found by multiplying the hourly variation by 8

and adding or subtracting the result to the value of the

decimation at Greenwich noon, because the hourly
variation itself is not constant, but changes from hour

to hour. The proper plan is to find the mean value of

the hourly variation over the interval in question, which

in this case will be the value at the middle of the interval

i.e., 4 hours after noon.

EXAMPLE. Required the value of the sun's declination at 9 hrs. 20 min.

a.m. on August 2nd, 1914, the time being South Australian standard, that of

the meridian 9 hrs. 30 min. E.

Corresponding astronomical time, . August 1st, 21 hrs. 20 min.

Corresponding Greenwich time, . August 1st, 11 hrs. 50 min. p.m.

Hourly variation at G.M.N. on August 2nd, 38-05"

Hourly variation at G.M.N. on August 1st, 37-32"

0-73"

The half of 11 hrs. 50 min. is very nearly 6 hrs. Therefore, the average

hourly variation is

37.32+^=37-5
11-83 hrs. x 37-5 - 443-6" - 7' 23-6".

Sun's declination at G.M.N., August 1st, 18 10' 50-4" N.,

and it is decreasing at this time of the year.

.. Sun's declination at given time, . 18 03' 26-8" N.

Corrections to Sun Observations. -We have already seen

in Chapter VII. that the sun is one of those bodies the

observed altitude of which must be corrected for parallax.
It must also be corrected for Refraction, as shown in the

same chapter.
Either from want of time or through the intervention

of clouds the surveyor may be unable to complete the

series of four observations, but any single observation

will enable him to determine the position of the sun's
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centre by making proper allowance for the sun's semi-

diameter, the value of which is tabulated in the Nautical

Almanac.

There is no difficulty with regard to the determination

of the altitude of the sun's centre from one observation,

as the semi-diameter has simply to be added on or sub-

tracted as the case may be. If, for instance, with a re-

versing telescope the sun is observed in quadrant 1, it

will mean that we are actually sighting the upper edge
of the sun, and the measured altitude will have to be

reduced by the value of the semi-diameter given in the

Nautical Almanac.

But with the observations for azimuth the matter is

not quite so simple. Thus, in Fig. 33, if C denotes the

centre of the sun's disc, Z the zenith, Z C A the vertical

trace on the celestial sphere passing through C and the

zenith, Z P B the vertical plane just touching the edge
of the sun's disc, then the error in azimuth made by
sighting the edge instead of the centre of the sun's disc

is the angle C Z P. But in the right-angled triangle
Z C P we have

sin C P- sin C Z . sin C Z P.

Now C P is an angle of about 15 minutes, and

its circular measure differs from its sine by 1 only
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in the seventh place of decimals. Consequently, we

may write

CP=sinCZx CZP
CZP=CPx cosecCZ,

or correction in azimuth

= semi-dia. x sec. altitude sun's centre.

The Effect of an Error in Latitude upon the Calculated

Azimuth. Referring to Fig. 31, we shall determine the

effect of an error in latitude if, in the spherical triangle

P Z S, we investigate the effect upon the angle Z of a

small change in c, the sides p and z remaining constant.

Let x be the change produced in Z by a small alteration

y in c. Then

cos p= cos c cos z + sin c . sin z cos Z (formula (2)

Chap. I.)

and cos p= cos (c-\- y) cos z-\- sin (c+ y] sin z cos (Z+ x).

Subtracting these two equations, writing x and y in

place of sin x and sin y, and unity in place of cos x and

cos y, we get

O = cos z . y . sin c + sin z sin c cob Z sin z (sin c

+ y cos c) (cos Z x . sin Z)

= cos z . y sin c y sin z . cos c cos Z

-f x . sin z . sin c . sin Z,

neglecting the term involving the product of x and y.

cos z . sin c+ sin z cos c . cos Z
.-. #= -: : : = -

y
sin z sin c sin Z

. v (by formula (3) of Chap. I.)
sin c sin Z

- cot P
sin c

P is, of course, the hour angle, and we thus have a simple
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formula for computing the error in azimuth produced

by a given error in latitude at any given time of the day.

Clearly, when P is very small that is to say, at times

near to noon cot P is very great, and the error produced

by a defective knowledge of the latitude is much increased.

In Fig. 34 a curve is drawn showing the error in azimuth

produced by an error of one second in the latitude, at

different hours of the day in latitude 40. It is really a

curve of tangents, and it will be seen that the error is very
much greater at or near noon than at any other time. The

Fig. 34. Error in Azimuth for Extra Meridian Observation of the Sun,

corresponding to error of one second in Latitude, at different hour&

of the day in Latitude 40.

error is least at 6 a.m. or 6 p.m. With increase in the

latitude of the place of "observation the error would be

greater still, becoming very great for latitudes near the pole.

The Effect of an Error in the Sun's Declination upon the

Calculated Azimuth. If a slight alteration y is made in

the value of p (Fig. 31), c and z remaining constant, then
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it may be shown in a similar manner to that of the work

just preceding that

x = cosec c cosec P . y,

where x is the corresponding change made in the azimuth

Z. The establishment of this formula we will leave as

an exercise for the student.

In Fig. 35 a curve is drawn showing the error in azimuth

produced by an error of 1 second in the declination at

different hours of the day at a place in latitude 40.

p.m.Gh. 54321
Fig. 35. Error in Azimuth for Extra Meridian Observation of the Sunr

corresponding to error of one second in Declination, at different hours

of the day in Latitude 40.

Again the error is very great near mid-day, and is least

at 6 a.m. and at 6 p.m. As in the previous case, with

increase in latitude of the place of observation the error

also increases, becoming so great in latitudes near the

pole that the method would be quite unreliable in arctic

or antarctic regions.
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It will be noticed that the two errors we have just

discussed are of opposite signs, so that, if the declination

and latitude are both too large, the errors tend to neutralise

one another.

The Effect of an Error in the Longitude of the Place of

Observation. An error in longitude will produce an error

in the computed Greenwich time at the instant of obser-

vation, and this in turn will produce an error in the

calculated declination. An error of 1 in longitude will

produce an error of 4 minutes in time. Now the rate of

change of the sun's declination varies at different seasons

of the year, but its maximum rate of change is less than

1 minute of arc per hour. Thus an error of 1 in longitude,
or 4 minutes in time, will produce an error in the declina-

tion that is always less than 4 seconds. As we have just

seen, the resulting error in azimuth is never less than the

error in declination, but if the observation is not made
within two hours on either side of noon, the azimuth

^rror is not much more than the declination error. It

will thus seldom happen that the longitude is not known

-approximately enough for the purposes of the surveyor.
The Effect of an Error in the Measured Altitude. Referring

again to Fig. 31, we have in the spherical triangle S P Z

cos p= cos c cos z + sin c . sin z cos Z.

Let x denote the small change in Z produced by a small

change y in z, p and c remaining constant. Then

cos p= cos c . cos (y -j- z) -f- sin c . sin (y+ z) cos (x-\- Z).

Subtracting and simplifying these equations, regarding
x and y as small quantities, we finally arrive at the result

x= cot S cosec z . y.

Thus x will be infinitely great when S = o or 180, which

is the case when the sun is on the meridian. And, again,
we arrive at the result that the resulting error in azimuth

is very great if the observation is made near noon, but

is small if S is anywhere near 90.
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The Best Time for Extra-Meridian Observations. The

preceding discussions all point to the desirableness of

making the observations upon the sun as far away from

noon as possible. But if we observe it when too low down

COMPUTATION.
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in the heavens, the refraction becomes a very uncertain

quantity, and consequently it is impossible to measure

the altitude with precision. For this reason it is generally
considered inadvisable to make the observation with the

sun at a lower altitude than about 15. With this limi-

tation it is desirable, in order to minimise the effects of

errors in altitude, latitude, and declination, to make the

observation as far from noon as possible. So that if the

readings are made in the morning, they should be made
as soon as possible after the sun has reached an altitude

of 15. Similar remarks will apply to the stars, which

should be observed as far away from the meridian as

possible, so long as they are at an altitude of at least

15 above the horizon.

Fourth Method Time Observations upon a Close Circum-

polar Star. The method about to be described is the one

chiefly adopted on geodetic surveys where the highest
attainable degree of accuracy is desired. The observa-

tions consist in measuring a series of angles between a

close circumpolar star and the R.M., noting the time at

which each pointing is made to the star. No altitudes

need be measured, and as the time may be measured with

sufficient precision by means of a chronometer, the

method is simple, as well as capable of great accuracy.
In the Northern Hemisphere the star a Ursse Minoris

(Polaris) is a very convenient one for the purpose. Being
a star of the second magnitude, it can be readily found,
and it is within about 1 10' of the N. Pole. \ Ursse

Minoris is within 1 of the Pole, but is a much fainter

star, being of magnitude 6- 6. Other suitable Northern

circumpolar stars are 51 Cephei (Mag. 5*2) and S Ursae

Minoris (Mag. 4*4). In the Southern Hemisphere, un-

fortunately, there are no stars near the pole sufficiently

bright to be readily picked out without first of all cal-

culating their positions. The best star for the purpose
is ff Octantis, which is within 46' of the S. Pole. It is,
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however, of magnitude 5-5, and in order to pick up the

star it is necessary to know beforehand the approximate

bearing of the R.M. This may be found from a daylight
observation by one of the methods previously described.

In Fig. 36, let P be the celestial pole around which

circulates in a small circle the circumpolar star S. Let

Z be the zenith. Then in the spherical triangle Z P S,

Z P = c = co-latitude, P S = p = polar distance of star,

Z P S = t= hour angle of star. P Z S = Z = azimuth

angle of star.

Fig. 36.

From formula (3) in Chapter I.

cot p sin c = cot Z sin t -f cos c cos t,

cot p sin c cos c cos t

cotZ=-
sin t

sin (c x) cot

sin x

where tan x= tan p cos .

The hour angle t, in time, is found by taking the differ-

ence between the R.A. of the star, which is the sidereal

time when the star is on the meridian, and the sidereal

.time at the moment of observation. To determine this

we must know both the local mean time and the longitude
of the place. Thus, we require to know the R.A. and
declination of the star and also the latitude and longitude
of the place of observation.
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For the most accurate work the striding level should be

used to determine the error in the measured azimuth of

the star owing to any defect in the levelling of the trans-

verse axis of the telescope. This will produce an appreci-

able effect upon the azimuth of the star owing to its alti-

tude, but as the R.M. will usually be near the horizon,

it will not as a rule be necessary to apply any correction

on this account to the reading taken to it. If, however,
the R.M. should be at a considerable altitude, it would

be necessary to read the striding level both when the

telescope is pointed to the star and when it is directed

to the R.M.

The series of observations necessary may be arranged
in several different ways. The following is the programme
recommended by the U.S. Coast and Geodetic Survey :

1. Point twice upon the R.M. and read the verniers

of the horizontal circle at each pointing, the instrument

being F.L.

2. Read twice on the star with F.L., noting at each

pointing the exact time, the reading of each end of the

striding level, and the readings of the horizontal circle.

3. Read twice on the star with F.R., the instrument

being reversed, noting the time and bubble readings as

before.

4. Read twice upon the R.M. with F.R.

According to this programme the striding level is left

with the same ends on the same pivots throughout the

observations.

The programme suggested in the handbook of instruc-

tions for Western Australian Surveyors is as follows :

1 . Set the instrument to zero, point to R.M., and read

the circle.

2. Intersect star and take the time.

3. Read the striding level and reverse it.

4. Read the circle.

5. Intersect star again and take the time.

9
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6. Read the striding level.

7. Read the circle.

8. Point to R.M. and read the circle.

In turning back to R.M. the instrument is moved in

the opposite direction. The instrument is now reversed,

the setting on the R.M. increased by 22 30', and the

operation repeated until angles have been read all round

the circle.

A series of observations having been taken by one of

these systems, the hour angle of the star and the corre-

sponding azimuth will, of course, be different for each

pointing. Each separate observation will give us the

azimuth of the R.M., and we wish to get the mean or

average of these determinations. We may compute the

azimuth of the star for each pointing separately by means

of formula (1), deducing from each computation the

azimuth of the R.M., and then take the average of the

different results. This is the simplest procedure, involving
no mathematical difficulties, and when only a few obser-

vations have been taken this is the best plan to adopt.
But when there are a number of observations the calcu-

lations may be lessened by computing the azimuth corre-

sponding to the mean of the several hour angles. This

would not be the same as the mean of the different azi-

muths, but the latter may be derived from the former

by applying a correction known as the
"
curvature correc-

tion/' In the case of a close circumpolar star, and a

series of observations not extending over about half an

hour, the curvature correction is given by the formula

12 sinj(T-T )

Correction = tan A -
-,

n sm 1

where A = computed azimuth of star at the mean hour

angle of n pointings,
T ~ mean of the n hour angles.
T = any one of the separate hour angles.
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The establishment of this correction is rather beyond
the mathematical scope of this work.

The true mean azimuth always lies nearer the meridian

than the azimuth corresponding to the mean hour angle.

The expression ,
which is usually

sin 1

denoted by m, has to be evaluated for each observation,

and as the same form also enters into the computation
of circum-meridian observations for latitude, tables have

been computed, available in various works, such as

Chauvenet's Astronomy and Trigonometrical Surveying

by Major Close, in which the values are tabulated for

different values of T T . The use of such tables greatly
facilitates the computation, as the curvature correction

is then found by adding the different values taken from

the tables, dividing the sum by n and multiplying by
tan A. A table giving the values of m at intervals of

10 seconds of time up to 19 minutes is given at the end

of Chapter IX.

Cireum-Elongation Observation for Azimuth.

The following account is extracted from a paper by the

author published in the Transactions of the Royal Society

of South Australia, vol. xxxix., 1915. The mathematics

involved is rather more advanced than that in the rest

of this work, but the method is of sufficient importance to

make it desirable to insert it :

On account of its convenience and comparative sim-

plicity, the observation of a circumpolar star at elongation

is, amongst surveyors, the favourite star observation for

the determination of a true azimuth. The great dis-

advantage of the method is that only one observation

can be made with the star actually at elongation, and

there is thus no opportunity to eliminate instrumental

errors in the same way as may be done, when a series of
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observations of the same star are made, by taking half

the readings with the instrument reversed. As a rule

the motion of the star in azimuth is so slow, when near to

elongation, that with an ordinary transit theodolite two
observations can be made and treated as though the star

were actually at elongation without introducing an error

sufficient to be measured by the instrument. But a much

higher degree of accuracy is possible with the method
if a series of half a dozen observations are made on each

side of elongation, and the object of the present paper is

to discuss the convenient reduction of such a series of

observations. For the reduction of a similar set of obser-

vations made upon a close circumpolar star there is a well-

known method that is particularly applicable to the Pole

star of the Northern Hemisphere. Unfortunately in the

Southern Hemisphere the close circumpolar stars are

very faint and not easy to work with, a Octantis has a

polar distance between 46' and 47', but its magnitude
is 5J, so that it is not readily picked out by the surveyor.
The bright southern stars that are most convenient for

the determination have commonly a polar distance of

about 30, and to these the formula for close circumpolar
stars cannot always be applied without introducing

appreciable error.

Two methods are possible for a series of observations

made before and after elongation. We may read the

verniers of the horizontal circle and note the time at each

observation, or we may read the horizontal circle and also

the altitude of the star at each observation. The former

method is preferable, provided that the surveyor has the

correct local time, as errors due to a defective knowledge
of atmospheric refraction are not then introduced. The
latter method, however, involves no knowledge of the

time, and is much more convenient when the observations

have to be carried out single-handed. In both cases the

azimuth of the star at each observation is corrected by
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the appropriate formula to give the azimuth of the star

at elongation, so that practically we obtain a series

of observations at elongation instead of only one.

Notation.

The following abbreviations will be used throughout :

z denotes the zenith distance of the star in any position.

p ,, polar distance of the star.

A ,, horizontal angle between star and pole.

I latitude of place of observation.

c co-latitude of place of observation.

h hour angle of the star in angular measure.

t ,, value of hour angle expressed in sidereal

time.

z , A ,
h

,
and tQ denote the values of z, A, h, and t

respectively when the star is at elongation.

First Method Horizontal Angle and Time being Noted at

each Observation. In the spherical triangle having the star,

the celestial pole, and the zenith as its angular points we
have the following fundamental relations :

cos A sin z = cos p sin c cos c sin p cos h, . (1)

sin A sin z sin p sin h, (2)

and from the corresponding right-angled triangle when
the star is at elongation

sin p cos p cos h
8in-4 = =

. . . (3)
sin c cos c

cos A -= cos p sin h . . . . , (4)

(1)X (3)-(2)x (4) gives

sin z sin (A^ A] = cos p sin p 2 sin 2
J (A h). . (5)
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This is an exact equation, but is unsuitable as it stands

for use in reduction of observations.

sin p sin A
Putting

- - = "

-, (5) may be written
sin z sin h

sin (A A) 2 sin2
J (h

-
h)-- - = cos p

-
;

sin A sin h

2sin 2
i(ft -ft)

or, writing y = cos p -

sin A cot A cos A =
y.

A is constant, and, therefore, A may be regarded as a

function of y.

Differentiating, we have

1 dA
smA ~ ~~ -

1,
sin 2 A dy

d 2 A dA
and sin A - = 2 sin A cos A -.

dy 2 dy

Therefore, when y = o

= sin A and - - = sin 2 A
,

dy dy2

and consequently, by Taylor's Theorem

. cos p 2 sin 2
J (hQ h)A = A Sin A o

-
;

r ;
-

sin h sin 1

cos 2
p 2 sin4 J (ft h)+ sin 2
sin 2

/? sin

provided that A A is measured in seconds of arc.

This is a convenient converging series for the deter-

mination of the difference between A and A
,
in which

the terms diminish so rapidly that in all ordinary work
it is not necessary to take into account any term except
the first. Thus, if the observations are made at a place
in latitude 30, on a star with a polar distance of 30,
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and are continued for fifteen minutes of time on each side

of elongation, the extreme value of h h = 3 45'. The

corresponding value of the first term in the series then

works out at 229", or 3' 49", and that of the second term
at less than \"'. If t t = 30 minutes, or h /? = 7 30',

then under the same conditions the first term= 902"

and the second term only 5|". With the same polar
distance and in the same latitude, the limiting value for

t tn ,
in order that the second term may not be greater

than 1", is about 19 minutes. On repeating the calcu-

lations for a place in latitude 20, and again for a place in

latitude 40, it is found that in neither case does the

limiting value of t t differ by more than a minute from
the value previously found if the second term in the series

is to be less than 1".

It thus appears that, even if the mathematical reduction

of each single observation is to be correct within 1" of

arc, it is sufficient to use only the first term of the series

if the observations extend over a period of about 19

minutes on each side of the elongation. The average
of the whole series may be correct within this limit, even
if the time extends over a considerably longer period,
because the error in reduction will exceed 1" only in the

case of the extreme observations.

A further considerable simplification would be made in

the reduction if it were possible to treat the denominator

as constant and write sin h instead of sin h. With any
single observation the error made, if this is done, may
be considerable. For instance, at a place in latitude 30,
if p= 30, for an observation made 15 minutes before

elongation, the difference made in the value of the second

term, when sin h is written in the denominator instead

of sin h, is about 5", whilst for an observation made
30 minutes before elongation the difference is about 35".

But, if we have a series of fairly well-balanced observa-

tions made both before and after elongation, the values
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of h range fairly evenly on each side of k
,
and on averaging

up the set there will be very little difference whether we
use h or h

,
the difference being generally of the order

of 1". So that in such a case it is usually quite sufficient

for the surveyor to use # instead of h. We may then

make a further slight simplification by putting

Min A cos p
sin h

= tan A cos 2
p.

Practical Computation. We therefore conclude that,

for the ordinary work of the surveyor, a series of well-

balanced observations extending to about half an hour

on each side of elongation on any circumpolar star may
be reduced to a series of observations at elongation by
the formula

A
tt
-A = t1m A n^p2^4^~^,. . (6)

sin 1

in which A A is given in seconds of arc.

If, however, only one or two observations are to be

reduced, as may be the case if the star at elongation has

been obscured by clouds, or the observations are badly
balanced and have been made mostly on one side of

elongation, or if the greatest possible degree of accuracy
is required in the computations, the formula used should be

A A- sin A
C S P_llii*- h) m

sin h sin 1"

This form may be obtained directly from (5) by con-

sidering AQ A as a small angle so that the sine may be

written equal to its circular measure.

If it is required to make the computation within I",

then, for observations more than 18 minutes from elonga-

tion, the value of A A given by formula (7) should be

corrected by being decreased by the amount

Sm2VOSX2

^.
4(Ar A)

. (8)sm 2 h sin 1
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As the expression has to be evaluated
sm 1

in the reduction of circum-meridian observations for lati-

tude, tables of the value of the expression and its logarithm
have been prepared, and are available in Chauvenet's

Astronomy, Close's Astronomical Surveying, and other

works. An abbreviated table is given at the end of

Chap. IX. Similar tables for are also
sin 1

available. The computation by any one of these formulae

is much facilitated by the use of these tables. Five-

figure logs are sufficient.

Writing tan A cos* p = B, m = .

2ain'* (V^*).
Sill 1

(6) becomes

A Q A = B m, where B is a constant.

Thus for each observation we get ^4 A -f- B m, and,

averaging the whole series,

Mean value of A = mean value of A + B x mean
value of m.

Therefore, mean angle between R.M. and star at elonga-
tion = mean observed angle between R.M. and star

i B x mean value of m.

EXAMPLE. In the following example the method is

applied to the reduction of a series of observations taken

by Mr. Calder, surveyor, upon Canopus near elongation :

Star observed Canopus.
Place Rendelsham, South Australia.

Right Ascension 6 hrs. 22 min. 06 sec.

Latitude 37 32' 40" S.

Declination 52 38' 43" S.

Longitude 9 hrs. 20 min. 40 sec. E.

Date December 9th, 1914.

Standard Meridian 9 hrs. 30 min. E
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COMPUTED VALUES.

Standard time at elongation 9 hrs. 45 min. 32 sec. p.m.

A = 49 55' 44"

h = 54 04' 50"

Mean observed angle between star and R.M., 83 14' 21".

Solving by means of (6), we obtain from the tables :

10)

323-3'

235-4'

99-9'

55-r
11-8'

0-2'

19-5'

57-2'

320-8'

472-6'

1.595-8
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Mean value of m
log tan A = 10-07509

log cos2
p = 9-80062

log 159-6 = 2-20303

log 120 = 2-07874

.-. Bm = 120" = 2'

.. Mean value of angle between R.M. and star at elongation
= 83 14' 21" 2' 0" = 83 12' 21"

The computation by means of the more accurate

formula (7) is rather longer. In this case we write

2 sin1 1& A)B = sin AQ cos p and m = ~~ -
,

sin h sin 1

and work on the same lines as before. To illustrate the

method the computation in this case is also worked out

as follows :

log cos p = 9-90031

log sin A = 9-88380

log 199 = 2-29885

log 121 = 2-08296

.-. Bm = 121" = 2' 01"

Mean value of angle between R.M. and star at elongation
= 83 14' 21" - 2' 01" = 83 12' 20"
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The difference between the results of the two calcula-

tions is so small that clearly the more simple approximate
method is quite sufficient for the surveyor. If the com-

putation be made for the last four observations only, the

difference between the results of the two methods amounts
to 8"

',
and for the last observation alone the difference

is 19". For the surveyor it is only necessary to use the

more accurate method of calculation for unbalanced

observations at a considerable time from elongation.
It may be proved that, provided the observations extend

evenly over an equal time on each side of elongation, there

is no need for the surveyor to know the local time with

great precision, an error of 1 minute in the time producing
an error of only about 1" in the azimuth.

But if the observations do not extend on each side of

elongation the case is different, and a more accurate

knowledge of the time is essential.

Second Method Horizontal Angle and Altitude being Noted

at each Observation. With the same notation as before, the

star being in any position, we have

cos p= cos c cos z-\- sin c sin z cos A.

Writing x= z z
,
this becomes

cos p = cos c cos (z -f x) + sin c sin (z + x) cos A .

p, c, and z being constants, this equation gives A as

an implicit function of x.

Differentiating the equation three times in succession,

the work being rather long but quite straightforward >
we

find that when x o

d A
- =o,dx
d2 A cot p

d x 2 sin z

d3 A 3 cot p cos z
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Therefore, by Taylor's Theorem

.in z 2

COt pOOB .(-..)
gin . r;

sin 2 z

provided that A A and z z are expressed in seconds

of arc.

To get some idea of the relative values of the terms in

this series, we find, if the star observed has a polar distance

of 30 and the latitude is also 30, then z = 54 44' 09",

and if z~ z = 1, the second term works out at 66" and
the last term to 0-8". If z z = 2 the values become
264" and 6" respectively.

The last term in (9) is equal to

coe'poosc o
3

,,

sin p (cos
2
p cos 2

c)

and has, therefore, an infinite value if p= c, in which

case the star passes through the zenith. This is clearly

of no practical importance.
The following are the values of the last terms in different

latitudes for a star 30 distant from the celestial pole,

if z-s = 1:-

Latitude. Value of Last Term in (9).

50, 3-5"

40, 1-5"

30, 0-8"

20, 0-4"

10, 0-2"

0, 0"

If z z = 2 the preceding values should be multiplied

by 8.

It follows, therefore, that for the ordinary work of the

surveyor the correction involved in the last term of the

series is quite negligible for observations extending over
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a range of altitude of 2, or 1 on each side of elongation,

provided that the star does not pass within 10 of the

zenith. At places near the equator the observations may
clearly extend over a very much greater range of altitude

with the same degree of precision.

To determine over what range of time the observations

may extend, we find on differentiating the equation

cos z = cos c cos p+ sin c sin p cos h

d z sin c sin p sin h
that --= sin p for a star at elongation.

d h sin z

This =
-I,

if p=30.
Thus, the rate of change of altitude at elongation does

not depend on the latitude, but simply on the polar
distance of the star, and for a star distant 30 from the

pole we have

dh= 2dz.

Therefore, if dz= 1, dh= 120' of arc, or 8 minutes

of time, the altitude of the star near elongation thus

changes by 1 in about 8 minutes. For stars closer to

the pole the time taken for the same change of altitude

will be greater.

Practical Computation. We conclude that for a set of

observations extending over a range of altitude of about

2, or 1 on each side of elongation, occupying, in the case

of a star with a polar distance of 30, about 16 minutes

of time, it is amply sufficient to use the formula

_^ = co^(,-^ sinr/
sin z 2

It should be noticed that the error made by the use

of this formula in the final reduction of a set of obser-

vations will be very much less than the error made in the

reduction of the single observation furthest from elonga-
tion. We have based the stated limitations upon the

error made in the reduction of the single observation,
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so that for a complete set of observations the time occupied

may be extended somewhat beyond the limits given above.

In low latitudes the observations may extend over a

greater range than in high latitudes. In latitude 10,
for instance, the observations may extend over half an

hour, and formula (10) will still give the average result

of the set of readings correct within less than 1".

If the range of altitude is too great, or it is desirable

to compute A A with the greatest precision possible,

then this value must be reduced if z>2 ,
or increased if

2<z , by the amount

cot p cos z (z z V

sin 2 z 2
sin2 !". . . (11)

The computation by means of (10) is somewhat facili-

tated by making use of the same tables for circum-meridian

calculations as have been shown to be suitable for the

reduction by the first method. For since z -z is a small

angle, we have, within the degree of accuracy to which

the tables are computed,

(? y V2 o *in 2 1 (? 9 \
\6 Q) .. aill \6 ^Q)

-T~
sm ' ~^Tr-

/ \9

and consequently we can take the value of sin I"

straight from the tables.

Then, writing

cot p (z z
)

2
.B= ,m= sin 1

,

sin 2

we get for each observation, just as in the previous

method,
A =A+Bm;

or. angle between R.M. and star at elongation

= observed angle between R.M. and star B m.
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Since B is a constant, we therefore get, on averaging
the whole set of observations :

Mean angle between R.M. and star at elongation
= mean observed angle between R.M. and star

i B x mean value of m.

Whether the + or sign is to be used depends upon
the position of the R.M. and upon which angle between

the star and R.M. is measured. It will be obvious in

any particular case which sign should be taken.

If the tables for m are not available, then it is better

to write

cot p sin 1"
B= ,m=(z-z )

2

sin z 2

and proceed as before, this time computing m for each

observation. The use of the tables does not thus really

make very much difference.

A defective knowledge of refraction does not seriously

affect the accuracy of the work. For even if the altitude

is in error by 15", the resulting error in azimuth is only
about three-quarters of a second of arc.

The following example illustrates the method of reduc-

tion. It will be seen that the calculations are simple,

and the method is undoubtedly capable of much greater

accuracy than the ordinary methods of making elongation
observations :

Star observed a1 Crucis.

Eight Ascension 12 hrs. 21 mm. 54 sec.

Declination 62 37' 47" S.

Date March 5th, 1915.

Place Burnside .

Latitude 34 55' 38" S.

Longitude 9 hrs. 14 min. 36 sec. E.

Standard Meridian 9 hrs. 30 min. E.
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COMPUTED VALUES.

Standard time at elongation 9 hrs. 13 min. 18 sec. p.m.

A = 34 06' 25"

2 = 49 51' 22"

Mean value of m,

6
)
104-26

. 17-38"

Mean observed angle between star and R.M. = 76 55' 50"

B = cot tan 62 37' 47" = 2-527.
sin 2 sin 49 51' 22"

Therefore, mean value of angle between R.M. and star at elongation

= 76 55' 50" - 2-527 X 17-38"

= 76 55' 50" - 44"

= 76 55' 06"

EXAMPLES.

1. At a place in latitude 30 N., prove that the azimuth of a circum-

polar star having a declination of 80 N. when at Eastern elongation is

11 34' 00-8", and that the hour angle of the star is then 84 9' 25-3".

Find the time taken for the azimuth to decrease by 5".

Ans. 3 min. 34 sec.

2. At a place in latitude 30 S., prove that the azimuth of a circum-

polar star having a declination of 60 S. when at Western elongation is

215 15' 51-8", and that the hour angle of the star is then 70 31' 43-6".

Find the time that elapses before the azimuth is diminished by 5".

Ans. 2 min. 11 sec.

10
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3. In latitude 37 S., the sun's declination being 14 S., show that at

9 a.m. the sun's azimuth is 72 14' 39".

4. Compute the azimuth of a star having a declination of 75 S. when

at Eastern elongation, at a place in latitude 30 S.

Ana. 162 36' 39-4".

5. Demonstrate that if two circumpolar stars A and B are in the same

vertical at some instant on the East of the meridian, A being above B,

they will later be simultaneously on the vertical making the same angle

on the West of the meridian, B being then above A.

6. At Greenwich noon, June 1st, 1914, the declination of the sun is 21

58' 52-9" N., the variation in one hour being 20-96". At noon on June 2nd

the declination is 22 07' 04-4", the variation in one hour being 20-00".

Find the sun's declination when the local time at a place in longitude 50 W.
is June 1st, 1914, 4 p.m.

An*. 22 01' 25-5".

7. The corrected observed zenith distance of the sun on the afternoon of

March 17th at a place in latitude 34 56' S. is 62 19'. If the sun's declination

is 1 28' S., compute its azimuth, to the nearest minute, of arc, at the time

of observation.

Ana. 289 20'.

8. At a place in latitude 41 12' 40" S. and longitude 11 hrs. 39 min.

34 sec. E. on the evening of the 15th January, 1913 (with the object of

checking a traverse bearing), the altitude and bearing of a second magnitude
star were observed through a break in the clouds. It was necessary to

compute the approximate R.A. and dec. of the star to identify it in the

catalogue, in order to obtain the precise elements for the calculation. From

the following data, find the star's R.A. and dec. :

Star's true altitude, . . 43 52' 34"

Bearing corrected for convergence, 131 3' 14"

Sidereal time G.M.N., 15th Jan-

uary, ..... 19 hr|. 37 min. 19 sec.

N.Z, standard mean time (11 hrs.

30 min. E.), ... 8 hrs. 20 min. 51 sec.

Ans. R.A. = 8 hrs. 18 min. 54 sec.

Dec. - 54 22' 11".

9. Determine the difference of azimuth of the sun at its rising in mid-

winter and mid-summer, also the difference (expressed in mean solar time)

in the lengths of the days at these two times. Assume the latitude of the
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place to be 30 N., and the greatest declination of the sun 23 27'. Disregard
corrections for refraction and parallax.

Ans. Difference of azimuth
= 54 42'.

Difference of lengths of days
= 3 hrs. 52 min.

10. In latitude 30 18' S., longitude 123 40' E., the following sun obser-

vation was taken at 4 hrs. 45 min. p.m. :

Alt., . . 22 28' 30", 258 43' 30"
|O_

R.M.

Co-alt... . . 67 55' 30", 258 51' 30" "o
I

357 46'.

The sun's declination for the day, G.M.N., was 20 19' 02" S., and for

the preceding day 20 06' 16" S., the semi-diameter being 16' 14". Find

the true bearing of the R.M.
Ans. 328 08' 08".

11. Find the bearing and altitude of a star at its Eastern elongation, also

the mean time of elongation. The latitude of the place is 31 S., the longitude

8 hours West, the R.A. of star is 6 hrs. 21 min. 30 sec., its declination 52

37' S., and sidereal time at G.M.N. on the day of observation 14 hrs. 28 min.

Ans. Bearing, 134 54'

Altitude, 40 25'.

Mean time, 11 hrs. 38 min.

55 sec.

12. In latitude 25 58' N. Polaris was observed at its Eastern elongation,

its declination for the date being 88 44' 20". Compute the azimuth of the

star.

Ans. 1 24' 10".

13. At Adelaide (latitude 34 55' 38" S., longitude 9 hrs. 14 min. 20 sec. E.)

a forenoon observation was made of the sun on June 24th, 1914.

From two observations taken with F.R. the mean angle between R.M.

and sun was 85 34' 05", the mean altitude 24 03' 50". The mean time was

10 hrs. 7 min. 30 sec. a.m. (standard time of meridian 9 hrs. 30 min. E.).

With F.L. the mean angle between R.M. and sun was 87 21' 00", the mean
altitude 24 55' 07", the mean standard time 10 hrs. 15 min. 30 sec. a.m.

The sun's declination at G.M.N. on June 23rd was 23 26' 51-9" N.. the

variation in one hour being 1 -26" on the 23rd, and 2-29" at noon on the 24th.

The angle between the sun and R.M. was measured from the sun to the right.

Determine th*
1 true bearing of the R.M. Allow for refraction and parallax.

Ans. 118 09' 28".
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14. During the evening of the date 28th July, 1914, several bearings of

a Centauri were observed when it was near elongation. Find the true

bearing of the referring lamp, which was assumed to be 179 00' 00".

OBSERVATIONS.

Statute Time,
10 Hours East of Greenwich.

10 hrs. 32 min. 15 sec.

10 hrs. 37 min. 20 sec.

10 hrs. 42 min. 06 sec.

10 hrs. 47 min. 12 sec.

10 hrs. 52 min. 05 sec.

Longitude 9 hrs. 39 min. 54 sec. E., Latitude 37 49' 53" S.

R.A. of star 14 hrs. 33 min. 48 sec., Declination 60 29' 16" S.

Sidereal time, G.M.N., July 28th, 1914. 8 hrs. 21 min. 13-93 sec.
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CHAPTER IX.

THE DETERMINATION OF LATITUDE.

THERE are many possible ways by which the surveyor

may determine the latitude of the place of observation,

but, as in the previous chapter, we shall here confine our

attention to the most practicable and most generally

used methods.

First Method By Meridian Altitudes of Sun or Star.

This is a very convenient and simple way of finding

latitude, where the greatest possible precision is not

required, and depends upon the fact we have already
discussed in Chapter III. that the altitude of the celestial

pole is equal to the latitude of the place of observation.

It follows that the latitude may be at once obtained by
observing the meridian altitude of a body whose declina-

tion or polar distance is known. This is the method

commonly used by the sailor at sea, the altitude of the

sun at apparent noon being observed with a sextant.

In Fig. 37, if O denote the position of the observer, Z the

zenith point, P the celestial pole, then if an object be

observed at S]5 we have AP=AS1 PS15 or latitude

meridian altitude polar distance. This might re-

present the position of a circumpolar star at its upper
culmination. If it were observed at lower culmination it

would be in the position S2 ,
and in that case AP = A S2

4- P S2 ,
or latitude = meridian altitude + polar distance.

In other cases the object observed may be on the

opposite side of the zenith to P. If E denotes the point
where the celestial equator intersects the meridian, the

body may be at S 3 or S 4 . Since BE+PA=90, it
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follows that B E = the co-latitude. Then at S 3 we have

B E = B S 3 E S 3 ,
or co-latitude = meridian altitude

declination. When the body is in the position S 4 its

declination will be South if the observation is made in

northern latitudes or north if the place is in South latitude.

In that case we have B E= B S 4+ E S 4 ,
or co-latitude

= meridian altitude + declination.

Thus in all cases the latitude can be very simply obtained

provided that we know the declination of the celestial body.
The observed altitude must be corrected for refraction

as discussed in Chapter VII., and as the amounft of this

correction depends upon the pressure and temperature
of the air, it is necessary, if the correction is to be made
as accurately as possible, that thermometer and baro-

meter readings should be taken at the time of observa-

tion. Usually it will be sufficient to take the refraction

correction straight from the table of mean refractions,

without troubling to allow for the difference between the

actual temperature and pressure from that for which

the table of mean refractions is made out, because the

maximum change in the refraction due to an alteration of

temperature only amounts to about 3" per 10 F., and for

a change of pressure to about 5" per inch of barometer.

In the case of the sun, since it is the altitude of the

upper or lower limbs that must be observed, and it is

the altitude of the sun's centre that ia required, a correc-

tion must be made for its semi-diameter. Another
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correction also must be made to allow for parallax.
Both of these are found from the Nautical Almanac.
With observations upon the fixed stars neither of these

corrections is needed.

If the altitude of the sun is observed with a sextant

on land an artificial horizon must be used, in which case

the double altitude is measured. The following is an illus-

tration of such an observation, made in South latitude :

Double altitude sun's lower limb,. . 64 13' 10"
Index error + ... 4' 5"

2
) 64 IT 15"

32 08' 37-5"

Refraction . 1' 55"

32 06' 42-5"

Parallax + . 7"

32 3
06' 49-5"

Semi-diameter -f- . . 15' 50"

Altitude of sun's centre, . . 32 22' 39-5"

Declination N, . . 19 47' 53"

Co-latitude, . . 52 10' 32-5"

.-. latitude = .... 37 49' 27-5"

With observations upon the sun, if the local mean time

is known, the time of apparent noon may be found by
applying the equation of time as found from the Nautical

Almanac. The altitude of the sun's lower or upper limb

may then be observed at the proper instant as measured

by the watch. The effect of an error in time will depend

upon the latitude of the observer and the declination of

the sun. In latitude 45, with the sun on the celestial

equator, an error of 1 minute in time will produce an

error of only 2 seconds in the measured altitude. Under

the same conditions if the time is wrong by as much as

10 minutes, the altitude measured will be too small

by 49 seconds. So that for the ordinary purposes of the

surveyor, when the observation is made in this way, it
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is not necessary to know the local time with great exact-

ness. If the approximately correct time is not known
the sun is followed by the

observer^ and the altitude

measured when it attains its greatest value.

With observations upon the stars the same general

principles will apply. With close circumpolar stars it is

possible to take two observations for altitude upon the

same star, the face of the instrument being reversed after

the first reading is taken. When this can be done the

accuracy of the determination is increased, but as a rule

the altitude changes too rapidly for this to be possible.

In latitude 30, for instance, the altitude of a star having
a polar distance of 30 is 48" less 5 minutes before and
after its culmination than when on the meridian.

Zenith Pair Observation of Stars. A great improvement

upon the accuracy of simple meridian observations may
be effected by making observations upon two stars

which culminate at approximately equal altitudes on

opposite sides of the observer's zenith. The altitude of

one star having been observed at culmination, the face

of the instrument is reversed and the meridian altitude

of the second starts then measured. The two stars must,
of course, be chosen so that the second culminates at a

convenient interval after the first. The method is com-

monly referred to as that of latitude determination by
"
zenith pair observations/' No attempt is made to

take two observations on the one star, and the combina-

tion of the two results largely eliminates errors of re-

fraction and errors due to the graduation of the vertical

arc. Thus, in Fig. 37, if Sj and S 3 denote the two observed

stars, we obtain from the observation upon Sx

lat.= AS1 -P-S1=AS 1-plJ . . (1)

and from the observations upon S 3

co-lat. = B S 3
- E S 3

= B S 3
-

(90
-

p 3 )

lat.= 180- B S 3
~

p* (2)
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Taking the average of the determinations (1) and (2), we
obtain

Thus, in the final determination it is the difference

of the measured altitudes A S, and B S 3 that is required,
and as any error in the allowance made for refraction will

affect both the altitudes alike, the error will practically

disappear when we subtract them. Consequently, the

method almost eliminates errors due to an uncertain

knowledge of the refraction, and also enables instru-

mental errors to be largely eliminated by taking two

separate observations with opposite faces of the

instrument.

If the local time and consequently the sidereal time is

known with fair accuracy, the best way is to intersect

each star at the instant when the sideral time is equal
to the star's right ascension. This is found from the

Nautical Almanac, and the two stars will be selected for

convenience, if possible, so that their right ascensions

differ by from 10 to 30 minutes. If the time is not known

accurately, then the telescope must be directed to the true

meridian, and the altitude measured when the star

intersects the vertical wire. Readings must be taken

also of the barometer, thermometer, and alidade

level.

The following example is taken from the Western

Australian Handbook for Surveyors :

Date, 1st May, 1910.

6 Argus observed altitude (South) = 58 01' 30".

Alidade level - = 5-8, E = 3-2.

1 Division of level = 15".

Barometer 30-52". External thermometer = 72-5. Attached ther-

mometer = 71.

Note. O means object end of telescope. E means eye end of telescope.



154 ASTRONOMY FOR SURVEYORS.

Compute refraction from "
Bessel's Refractions," as given on pp. 430, 431

Chambers' Log Book, from the formula :

True ref .
= mean ref. x B x t x T.

Mean refraction alt. 58 01' = 36-1", . . 1-55751

B for 30-52" = 1-032", . 0-01368

<for71F. = 0-997", . 9-99870

T for 72-5 F. = 0-955", . 9-98000

True refraction ^35-5" 1-54989

Obsd. alt.

Ref.

Level +

True alt.

Polar distance

= 58 Or 30"

35-5'

58 00' 54-5'

19-5'

= 58 01' 14"

= 26 04' 19-3'

Level.

O 5-8

E 3-2

2
)J_-6
1-3 x 15" - 19-5'

Latitude = 31 56' 54-7"

Date, 1st May, 1910.

I Leonis Obsd. Z.D. (North) = 42 57' 00".

Alidade Level, = 3-5, E = 5-5.

Barometer = 30-55", External Thermometer =- 72-0.

Attached Thermometer = 71-0.

Logs.
Mean ref. alt. 47 3' = 53-7", . . 1-72997

B for 30-55" 1-032, . . . 0-01368

* for 72-0 = 0-997," . . . 9-99870

T for 71-0 = 0-956", , . 9-98046

True refraction == 52-8", . 1-72281

Level.

E 5-5

3-5

2
)_2-0
TO X 15" = 15

True alt. = 47 01' 52-2"

Declination =11 01' 16-1"

Co-latitude = 58 03' 08-3"

Latitude = 31 56' 51 -7"

Deduced latitude 6 Argus (South),

I Leonis (North),

Mean

31 56' 54-7"

31 56' 51 -7"

31 56' 53-2"
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Meridian Altitudes of a Star at both Lower and Upper
Culminations. If the meridian altitudes of a star be

observed at both lower and upper culminations, then,
if these be separately corrected for refraction, the mean
of the two altitudes will give the altitude of the celestial

pole, which is equal to the latitude of the place. The
method does not require a knowledge of the decimation

of the star, but as this information is always to be obtained

in the Nautical Almanac, there is no practical advantage
to the surveyor, save perhaps in very exceptional cases.

On the other hand, the long interval necessary between
the two observations is a very practical inconvenience.

Consequently, the method is not one in practical use

amongst surveyors, although it is employed by astronomers

at fixed observations.

Second Method By Circum-Meridian Observations. Obser-

vations of stars or the sun taken near to the meridian

are commonly spoken of as circum-meridian observations.

By taking a series of altitudes of a star or the sun for

some few minutes both before and after it crosses the

meridian, instrumental errors may be largely eliminated,

and by proper methods of reduction the results may
be used to give a very accurate determination of latitude.

It is necessary to have the means of accurately noting
the time of each observation, and then each altitude

may be corrected or reduced so as to give us the corre-

sponding altitude on the meridian itself. Thus a series

of
"
circum-meridian

"
altitudes becomes equivalent to

a series of measurements taken on the meridian itself,

and in the taking of such a set of observations the instru-

ment may be reversed and its errors eliminated in a

way that is not possible with a single meridian obser-

vation. Still greater precision may be attained by
taking such observations upon equal numbers of stars

North and South of the Zenith, at approximately equal
altitudes.
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In Fig. 38, let Z be the Zenith, P the celestial pole,

and S the observed star. As this is to be near the meridian,

the angle S P Z will be small.

Let z= SZ, the Zenith distance,

p= S P, the polar distance of the star,

c = P Z, the co-latitude,

t == the hour angle S P Z.

Then, from the triangle S P Z,

cos 2= cos c cos p-\- sin c sin p cos t. . (1)

Let x be the correction that has to be applied to the

observed zenith distance, z, in order to deduce the zenith

distance when the star is on the meridian.

Z

Fig. 38.

Then meridian zenith distance = z x= p c.

t

If, now, in equation (1) we write cos t= 12 sin 2
-,

we get j

cos z = cos (c p) 2 sin c sin p sin 2
-.
L

cos z cos (2 x)
= 2 sin c sin p sin 2

-.
2

x z\ t

2 sin - sin ( 2 -
j

= 2 sin c sin p sin2 -.

x
sin - =

sin c sin p sin2 -

2
. / x

sin (
- -
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If x is small, we may now replace sin - by the circular

measure of \x, which is \x sin I", provided that x is

measured in seconds of arc. Also, we shall make very
/ X\

little difference to the result if, instead of the sin
(z -j

of the denominator we write sin (z ;r)=sin (p c).

Thus, if x is the correction to be applied in seconds of

arc, we obtain

2 sin 2

sin c sin p 2

sin (p c) sin I"

or, in the form in which it is more usually written, if a

denotes the observed altitude, A the altitude on the

meridian, / the latitude, and n the declination,

t

2 sin2 -
cos / cos n 2

A _ xy __. , __

cos A sin I"

It will be noticed that if a series of observations are

taken upon the same star, the first factor in this expres-
cos I cos n

sion, i.e.--

,
is the same for them all. We will

cos A
2 sin'-

denote this by B. If we write m =-
,
we have

sin 1"

A= a + B m.

The value of m in seconds may be computed, knowing
the value of t, or more conveniently it may be taken from

tables such as are given in Chauvenet's Astronomy or

from the abbreviated table given at the end of this

chapter.

Thus, if ttj, a 2 ,
a 3 , etc., denote a series of observed

circum-meridian altitudes of the same star, and m l5 ra2 ,
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m 3 , etc., are the corresponding values of m, we obtain

a series of values for the corresponding meridian altitudes

given by the equations

AI= i+ B m l

A 2
=

2+ B ra2

A 3
= a 3 + B m 3 ,

etc.

Therefore, if we denote by A the mean of the deduced

meridian altitudes, by a the mean of the actual observed

altitudes, and by m the mean of the computed factors

m, we have

A = a + B w .

With the aid of tables for m, the reduction of the

observations thus becomes extremely simple. We take

the mean of the values of m, multiply by B, and add the

product to the mean of the observed altitudes.

The deduced mean meridian altitude is then corrected

for refraction and the latitude is computed as an ordinary
meridian altitude observation.

The value of B involves both the latitude and the

meridian altitude, since

cos I cos n

cos A.

but the value of I used in this is the approximate latitude

as deduced either from the map or from a simple meridian

observation. The value of A used is the meridian altitude

computed from the approximate latitude and the known
declination of the star. The approximate value of B
thus deduced is quite sufficiently accurate, when multiplied

by m, to give the correction required. A still higher

degree of accuracy may be attained by repeating the

calculation, using for B the value of the latitude as first

computed.
Before starting the actual observations, it is necessary

to calculate the time of the star's meridian transit. The
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observations should then be made within about ten minutes

on each side of this. The t in the formula is the interval

of sidereal time between the instant of actual observation

and the instant of meridian transit, expressed in angular
measure at the rate of 15 per hour.

The method involves an accurate knowledge of the

local time, and is then capable of a high degree of pre-

cision. To get the best results the errors should be

balanced by taking an equal number of observations on

stars both North and South of the Zenith. An equal
number should be selected on each side at approximately

equal altitudes. The errors are likely to be greatest for

stars observed near to the Zenith, especially when the

place of observation is near to the equator. The range
of observed altitudes should, if possible, lie between

40 and 75 above the horizon, and the closer the stars

are observed to the meridian the better will be the

results.

More Exact Methods of Reduction of Circum - Meridian

Observations. The approximate formula that we have

given is the one usually adopted for the reduction of

circum-meridian observations. A still closer approxi-
mation may be obtained by using the more elaborate

formula

A=a+Bra+Cra',

2 sin4 \ t

where C= B 2 tan A and m''= ',
sin 1"

A and B having the same significance as before.

The correction introduced by the third term in the

formula is usually very small when the observations are

made close to the meridian. If the value of t in minutes

does not exceed two-fifths of the Zenith distance of the

star in degrees, then it can be shown that the correction

introduced by the term C m f
is never more than V,
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so that the more exact formula is only required where
the highest precision possible is sought.

This may be obtained in a manner similar to that

employed in Chap. VIII. for the corresponding formula

for circum-elongation observations for azimuth.

The Limits of Time for the Observations. According to

what we have just seen, the greatest interval of time in

minutes between any observation and the instant of

meridian transit should not exceed two-fifths of the

zenith distance of the star in degrees if the error in re-

ducing the observation to the meridian is to be limited

to 1". It is not possible to work so precisely as this

with the instruments commonly used, and the time may
be extended somewhat beyond this limit. In general,

it seems a good rule to say that the greatest value of

t in minutes of time should not exceed one-half of the

zenith distance in degrees. Thus, if the altitude of the

star is 50, the observations may be made within

20 minutes on each side of the meridian transit. In

that particular case the maximum error would still only
amount to 1", but in other cases the error may be

somewhat greater if this rule is followed, but never so

much as 3", provided that the star is not within 10 of

the zenith.

Circum-Meridian Observations of the Sun. As a general

rule, it is more convenient for the surveyor to make
observations upon the sun than upon the stars, and

exactly the same method as we have described may be

followed for circum-meridian observations of the sun.

Obviously the sources of error cannot be balanced in the

same way as with stars by taking observations both

North and South of the. zenith, so that such precise work

is not possible. There is another difficulty arising from

the fact that the sun's declination is not constant and,

if the observations extend over 30 minutes, it may vary

by as much as 30". If, however, a similar number of
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observations are made both before and after apparent
noon, the errors will very nearly balance in the mean,

provided that in the computations the value of the

declination used is the value at apparent noon. This is

not exact, but sufficiently so for all but the most precise
work.

An even number of observations should be made,

usually eight.

The first observation will be to the sun's upper limb

with F.R. Then two in succession to the lower limb

with F.L., next two in succession to the upper limb, the

instrument being reversed, once more with F.R. Two
more to the lower limb with F.L., and finally one to the

upper limb with F.R. With this order the sun's diameter

is eliminated in the mean. The alidade level should be

read and recorded at each observation. The method of

recording and the calculation is shown in the accom-

panying example :

EXAMPLE OF CIRCUM-MERIDIAN OBSERVATION OF SUN FOR LATITUDE.

Place, .

Longitude,

Date,

Survey Office, Adelaide.

9 hrs. 14 min. 20-3 sec.

July 4th, 1914.

Mean observed altitude = 32 07' 05-9".

11
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COMPUTATION FOR LATITUDE.

163

Third Method Latitude by Prime Vertical Transits.

The Prime Vertical has been already defined as the

vertical plane at right angles to the meridian, running

truly East and West. Stars with polar distances less than

90 and greater than the distance of the pole from the

zenith i.e., greater than the co-latitude of the place
will cross the prime vertical twice in a sidereal day. If

the interval of time between the East and West transits

of a star be measured, and the decimation of the star be

known, then the latitude can be readily computed. Thus,
in Fig. 39, let E ZW represent the prime vertical of the

observer, Z being the zenith. Let P be the celestial pole

and A C B the portion of the star's path described on the

same side of the prime vertical as the pole. A and B are

the points where the star's path intersects the prime
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vertical. If A and B respectively joined to the pole P
by arcs of great circles, P A and P B will each be equal
to the star's polar distance or to the complement of its

declination. Then, in the spherical triangle A Z P, the

angle at Z is a right angle, P Z = the co-latitude, P A
= the star's polar distance, and the angle A P Z, if turned

into time at the rate of 15 per hour, will represent half

the interval between the transits at A and B measured

in sidereal time.

2

From Napier's Rules we have

cos A P Z = tan P Z x cot A P,

whence tan latitude = tan declination x sec t,

where t = half the interval of sidereal time between the

transits expressed in angular measure.

By this method the errors due to uncertainty with regard
to refraction are largely eliminated, because the times of

transit are observed instead of altitudes. The method
does not require a knowledge of the exact local time, as

it is an interval of time that has to be measured, conse-

quently it is sufficient for the surveyor to have a watch or

clock whose rate is known.
It will be obvious that in places where the elevation

of the celestial pole is small that is to say, in places
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near the equator the paths of such stars as move across

the prime vertical will intersect it very obliquely, and it

will not be possible to secure a good determination of the

exact time of intersection. A precise measurement will

be more easy in places of higher latitude.

The Effect upon the Determination of an Error in the Measure-

ment of the Time Interval. To make a determination of

latitude by the method just described, the surveyor has

to set out the direction of the prime vertical, and also to

measure the time interval between the East and West
transits. In order to judge therefore of the degree of

precision of which the method is capable we require

to investigate the effect of small errors in each of these

measurements.

If we denote the latitude by I and the declination of

the observed star by d, we have

tan /= tan d . sec t. (1)

If a small error y is made in the measurement of t,

and x is the corresponding error made in the latitude,

tan (/+ x)
= tan d . sec (t+ y).

Expanding and writing tan x= x, cos y = 1
,
sin y = y

'

since x and y are small, we have

x+ tan I tan d

1 x tan I cos t y sin t

.-. neglecting the product of the small quantities x y,

we get
x cos t -f- tan I cos t y tan / sin t = tan d x tan d tan I.

Making use of (1), this becomes

tan 2 d
=< tan

tan d sec 2
I // tan2 d

sin 2 I /tan 2
1
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The student who understands differential calculus can

obtain this result at once by differentiating equation (1),

keeping d constant.

From this equation we get the important practical

deductions that if d is nearly =1, x will be very small,

and that if d is nearly= 0, x will be very large. So that

it would seem that the stars most suitable for observation

are those whose declinations are nearly equal to the

latitude. A star having a declination the same as the

latitude would pass through the zenith point, and the

declination must be somewhat less than the latitude for

the method to be possible. On the other hand, a star

with zero declination would pass through the E. and W.

points on the horizon at the prime vertical for all latitudes,

the interval of time between its transits would be exactly
six hours no matter what the position of the observer,

and no determination of latitude could be made. It

would apparently follow, then, that the best stars to select

are those that cross the prime vertical near the zenith.

But a star crossing the prime vertical very near to the

zenith intersects it so obliquely that it is not possible

to make an accurate determination of the time of transit.

The distance from the zenith, at which the path of the

star will make a sufficiently large angle with the prime
vertical to enable a good measurement of the transit

to be made, will depend upon the latitude of the observer.

And the practical conclusion is that the stars observed

should be as high up on the prime vertical as is consistent

with an exact determination of the time of transit. Stars

which cross it low down must be avoided, as they lie

near the celestial equator, and the error in latitude

produced by a slight error in time is then very large.

A definite calculation will give a better idea of the

effect of a defective measurement of the time interval.

If we take a place in latitude 30, and suppose the obser-

vation to be made on a star with a declination of 10,
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then x= l-3y. Now t in our formula is half the total

time interval between the transits, so if this whole interval

is in error to the extent of one second of time, y = half a

second. But half a second of time is equivalent to 7-5

seconds of arc, and this multiplied by 1-3 gives 9-7 seconds

of arc as the error in latitude caused by an error of one

second in the time interval.

If in the same latitude the star observed has a declina-

tion of 20, then, from the same formula, x== -52 y. In

this case a mistake of 1 second in the total time interval

will cause an error of 3-9 seconds in the latitude. If the

decimation is 25, x= -32 y, and the corresponding error

in latitude is 2-4 seconds. In higher latitudes the errors

are still greater.

Clearly, even if the surveyor is to be content with a

determination of latitude to the nearest minute of arc,

he must be able to rely upon his measurement of the time

interval within a few seconds.

The Effect of an Srror in the Direction of the Prime

Vertical. The error arising from a defective setting out

of the prime vertical is not nearly so serious, because,

if this is marked out so that the time of the Eastern transit

of the star is earlier than it should be, then the time of

the Western transit will be correspondingly hastened,

so that the interval between the transits will be very
little different to that when the prime vertical is correctly
located. Thus, in latitude 30, the measurements being
made on a star with a declination of 20, even if the

prime vertical is set out as much as 1 out of its true

position, the resulting error in the latitude determination

is less than 1 minute of arc. So that a comparatively

rough determination of the prime vertical is sufficient

for the surveyor's purpose. It is, of course, most important
that the instrument shall be in accurate adjustment, so

that it will sweep out a truly vertical circle. But instru-

mental errors may be largely eliminated by taking



168 ASTRONOMY FOR SURVEYORS.

observations on alternate nights with the instrument

reversed.

Although the method is capable of giving results of

great precision, the practical inconvenience caused by
the long interval between transits and the necessity for

exact time measurements rather put it out of court as

a suitable method for ordinary surveyors in the field.

The same method may be applied, with some modi-

fication of formulae, to any vertical circle whatever. But
the prime vertical circle is the most suitable for accurate

work.

Striding Level Correction to Prime Vertical Observations.

The striding level should always be used with prime

vertical observations as the resulting determination of

the latitude is in error by an amount equal to the angle

which the transverse axis of the telescope makes with

the horizontal. Thus, in Fig. 39a, if P denotes the celestial

pole, Z the zenith, and E W the East and West points on

the horizon, then, if the striding level shows an error in

the horizontality of the transverse axis of the telescope,

the circle upon which the observations are actually made
will be E CW instead of the true prime vertical E Z W.
The star is observed to transit at the point S, the angle

S P C = t, and the angle S C P is a right angle.
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Thus, we shall get

cot C P = tan declination x sec t.

The true co-latitude is then C P Z C, the + sign being
taken if, as in the figure, C is on the same side of Z as P,
and the sign being used if C and P are on opposite
sides of Z. This is determined by the direction of the level

error, and Z C = the angular measure of the level error.

Thus, to make the correction, the computation for

latitude is made in the ordinary way, and then we add
or subtract the striding level error.

EXAMPLE. At a place in S. latitude the interval between the passage of

Sirius across the prime vertical is 6 hrs. 09 min. 19-1/3 sec. mean time. The

mean readings of the bubble on striding level were 10 N. and 14:8., each division

being = 20". The declination of the star is 16 35' 33" 8. Determine the

latitude.

6 hrs. 09 min. 19*1/3 sec. of mean time

= 6 hrs. 10 min. 20 sec. of sidereal time

= 92 35' 00" of arc

tanlat. = tan dec. X sec. 46 17' 30".

tan dec., 9-4741732

cos 46 17' 30", . 9-8394702

9-6347030
.-. lat. = 23 19' 37".

But the striding level error necessitates a correction

= ?.-t..
10

x 20 = 40".

As the South end of the transverse axis is the higher, the derived latitude

is too small.

.-. corrected latitude = 23 20' 17" S.

Fourth Method By the Altitude of the Pole Star at any
Time. Provided that the exact local time and the

approximate longitude are known, the latitude may be

found from an altitude observation of a close circum-

polar star at any time. In the Northern Hemisphere the

Pole Star is commonly selected for this purpose, and

special tables are given in the Nautical Almanac for

reducing the observations. In the Southern Hemisphere
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unfortunately there is no bright star sufficiently near

to the Pole to make the method a convenient one for the

surveyor.
In Fig. 40, let S be the circumpolar star, Z the zenith,

and P the pole as before. Then, with the previous nota-

tion, if

z = S Z, the zenith distance,

p= S P, the polar distance of the star,

c= P Z, the co-latitude,

t = the hour angle S P Z.

From the triangle S P Z we have

cos z= cos c cos p+ sin c sin p cos t,

or, if a is the observed altitude, and I the latitude

sin a = sin I cos p-\- cos I sin p cos t.

Z

Fig. 40.

Now a will differ from I by a small quantity, which is

always less than p. In the case of the Pole star p is also

small, being about 1 10' at present. Let

a= l-\- x,

where x is a small correction.

. . sin I cos x + cos I sin x= sin / cos p -f cos I sin p cos t.

.-. sin 1(1- -+ ...)+ cos I (x- +...)
b

2

= sin/l ... cos
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Neglecting the square and higher powers df x and p
in this equation, we get x= p cos t, which is the value

of # to a first approximation.

Next, retaining the squares of x and p, but neglecting
the higher powers, we get

p2 ^.2

x cos 1= p cos / cos t sin I -\ sin I.

Substituting for x 2 the value p* cos2
1, we obtain then

as a second approximation

x = p cos t J tan / sin 2
1 . p

2
.

The second term in this expression is very small, and
as tan / differs from tan a by only a small quantity, the

difference when multiplied by p2 will be too small to take

into account, so that we may write

x = p cos t | tan a sin 2
1 p

2
.

In this formula x and p are in circular measure, but

if x and p are measured in seconds we may write

x = p cos t 4 p
2 tan a sin 2

1 sin 1",

so that we have for the latitude

1= a p cos t + \ p
2 tan a sin 2

1 sin \" .

The formula is, of course, an approximation only, but

it can be shown that it is sufficiently accurate to give the

result within 1" of the truth.

To determine t, the sidereal time must be known

accurately at the moment of observation, and t is

then the difference between the sidereal time and

the right ascension of the star turned into angular
measure .

Four altitudes should be taken in as quick succession

as possible, one with F.R., two with F.L., and then again
one with F.R., the alidade level being read at each obser-
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vation, and the chronometer times noted. The mean
of the altitudes and the mean of the chronometer times

are then taken as the basis for the reduction as a single

observation.

A Rough Method for the Determination of Latitude by

Noting the Rate at which Altitude of Sun or Star Changes

near the Prime Vertical. This is only a very rough and

approximate method at best, but it is interesting because

of its simplicity, and because it requires no knowledge
of either the local time or the declination of the body
observed. But it is not to be classed along with the

previous methods.

In Fig. 41, let Z be the zenith point, P the celestial

Fig. 41.

pole, and R S two consecutive positions of the sun or

star. The change of altitude will be measured by the

difference between the arcs Z R and Z S, and the interval

of time between the two positions will be measured in

angular measure by the angle S P R.

In the triangle Z P R, Z R = zenith distance = z,

P Z= co-latitude = c, P R = polar distance = p, R Z P
= azimuth measured from elevated pole = A, Z P R
= hour angle = B.

In the triangle Z P S, suppose that z has become

changed to z y, and B to B x, c and p remaining
unaltered.
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Then from the formulae of spherical triangles, we have
cos z = cos p . cos c + sin p . sin c . cos B, and cos (z y)
=,cos p cos c-\- sin p sin c cos (B x).

Subtracting these expressions, and regarding x and y
as small quantities, so that we may write cos x= I, sin x
= x, etc., we obtain

y sin z = sin p sin c sin B . x.

sin z sin p
.out = .

s in B sin A

y= x . sin c sin A,

y
or cos . latitude = - cosec . azimuth .

Thus, in order to determine the latitude, all we have to

do is to measure the change of altitude y that takes

place in a given time whose angular measure is x. If

t=the interval of time in seconds, x= 15 t seconds of

arc.

y
As the ratio is to be multiplied by cosec A, and

3C

the observation is made near the prime vertical, an error

in the azimuth A will have but a small effect upon the

result.

A convenient way of making the observation is to

take the time required by the sun, in the afternoon or

early morning, to cross the horizontal wire of the telescope,

observing at the same time the sun's approximate bearing.

For an afternoon observation, bring the sun's lower limb

into contact with the wire and start the stop watch.

When the sun is about bisected by the wire, read the

approximate azimuth of its centre. Stop the watch at

the instant that the upper limb becomes tangent to the

wire.
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EXAMPLE. At a place in South Latitude on March 17th, the sun took

2 min. 46-4 sec. to transit the horizontal wire of a theodolite, the bearing

of its centre being 289 20'.

Diameter of sun = 32' 11-3" = 1,931-3"

15 X 2' 46-4" = 15 x 166-4 = 2,496

1 Q^l -^
cos lat. =

2496
X OSeC 109 20/ '

1,931-3, 3-2858497

cosec 109 20' = sec 19 20', . . 10-0252082

13-3110579

2,496, . . 3-3972446

cos 34 55', ..... 9-9138133

Therefore, the latitude is 34 55' S.

It will be found on trial in this example that if the

azimuth is 1 out, the computed latitude is about 30'

in error, and we must know the azimuth of the sun within

2' if we wish to find the latitude to the nearest minute.

If the observation had been made with the sun nearer

to the prime vertical, however, an error in azimuth

would not produce anything like so serious an

effect.

To get anything like accurate results, the time must

be measured with great precision. In the above example
an error of one whole second in the time causes an error

of nearly three-quarters of a degree in the latitude. With
a stop-watch the time may be estimated to the tenth of

a second, but it is evident that only approximate
determinations of latitude are possible by this

method with the instruments at the disposal of the

surveyor.
The method is of interest, because it may be practised

upon a star without the use of any Nautical Almanac
Tables. It will give best results in high latitudes with
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observations made as near to the prime vertical as

possible.

There are many other methods by which latitude may
be determined, but for the most part they are not so

convenient nor do they allow of the same elimina-

tion of instrumental errors as the four standard methods

described. The following is an illustration of a

method in which horizontal angles only have to be

measured :

Determination of latitude by the Measurement of the

Horizontal Angle between Two Circumpolar Stars at their

Greatest Elongations one on each Side of the Meridian.

Let c be the co-latitude, pl and pz the respective polar
distances of the two stars, A x and A 2 the azimuths at

elongation, one being measured to the East and the

other to the West.

The measured angle = Ax + A2 .

Then sin pt
= sin c sin A

1? . . (1)

and sin p2
= sin c sin A 2 . . . (2)

(1)+ (2) gives

z Pi P-2 AI+ A2 A x A 2
2 sm - - cos - - = 2 sin c sin - cos - -

.22 22
(1)- (2) gives

Pi+ Pz Pi Pz A!+ A2 .
Ax A2

2 cos - sin '-- = 2 sm c cos - - sin - -.22 22
Dividing one equation by the other gives

pi~r pz j. Pi Pz Aj-f" A 2 Aj A 2
tan - cot - = tan - cot .22 22
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Since A X+A2 is known, this enables A
1 A2 to be

computed. Hence Aj is found.

Then sin c =
sin

sin

Example, taken, from Handbook of Instructions to South Australian Sur-

veyors.

Observed horizontal angle 77 45' between Canopus and
/?

Tri. Aus. at

opposite elongations, polar distances 37 22' and 26 57'.

Z 2 -tan 5 12'

tan - 2 = tan 38 52' 30",

tan

-tXt *<>

tan 1

-2~-
*

A, -A,

tan 32 09' 30",

= 6 40'

8-9597747

9-9064310

18-8662057

9-7984562

9-0677495

and -L~^
Z =38 52' 30"

Aj = 45 32' 30"

sin P! = sin 37 22', .

sin Aj = sin 45 32' 30",

cos lat.,

.-. latitude = 31 45' 20".

9-7831268

9-8535522

9-9295746

TABLE GIVING VALUES OF m FOR REDUCTION OF CIRCUM-MERIDIAN

OBSERVATIONS.

2 sin* ~

The values of m are given in seconds of arc.
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For intermediate values of t the corresponding values of m may be found

by simple interpolation.

EXAMPLES.

1. At a place in latitude North, the true zenith distances of a Cephei

(declination 61 58' 21-1") is determined as 26 54' 28-3" N. The zenith

distance of a Aquike (declination 8 29' 22-7") is found as 26 34' 27-5" S.

Find the latitude of the place.
Ans. 35 03' 51-5".

2. In latitude 30 S. the times of transit of a star whose declination is

20 S. are observed across the prime vertical. If the direction of the prime

vertical is in error by 1, show that the measured interval of time will be

too great by about 14 seconds.

3. An observation made in Antarctica on November 19th, 1912, gave

the altitude of the sun's centre as 42 07-8', the temperature being 17 F.

and the barometer reading 27-2 inches. Correct for refraction and parallax,

and compute the latitude of the place, given that the sun's declination is

19 21-6' S.

Ans. 67 14-7' S.

12
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4. The declination of the sun being 20 39-9' S., its meridian altitude is

observed as 43 17'. The correction for refraction and parallax being

00-9', determine the latitude of the place.

Ans. 67 23-8' S.

5. The sun is observed on the prime vertical, morning and afternoon,
the times by watch being 7 hrs. 30 min. and 4 hrs. 14 min. The sun's

declination is 17 31' 30". Compute the latitude.

Ans. 37 17' 30".

6. At a place in S. latitude the interval between the passages of Sirius

across the prime vertical is 6 hrs. 9 min. 19 sec. mean time. The mean

readings of the bubble on striding level were 10 N. and 14 S., each division

being = 20". The declination of the star is 16 35' 33" S. What was the

latitude of the place of observation ?

Ans. 23 20' 17" S.

7. The hour angle of Aldebaran (dec. 16 20' 15" S.) when on the prime
vertical was found to be 4 hrs. 35 min. 19-5 sec. What was the latitude

of the place of observation ?

Ans. 39 04' 3" S.

8. At a place in the Southern Hemisphere y
z Ceti (dec. 2 51' 22" N.)

was observed at equal altitudes of 48 02' 20", and the interval in mean
solar time between the two occurrences was 16 min. 12 sec. Required the

latitude of the place.
Ans. 43 50'.

9. Antares crossed the prime vertical at 13 hrs. 52 min. sidereal time.

Find the latitude of the place of observation.

R.A. of Antares, 16 hrs. 23 min.

Dec. 26 13' S.

Ans. 31 54' 49" S.

10. The altitudes of a star when it crosses the meridian and prime vertical

are respectively 65 and 10 (corrected). Find the star's declination and

latitude of place.
Ans. Lat., 29 58' 39".

Dec., 4 58' 39" S. in S. lat.

or N. in N. lat.

11. The altitude of Sirius on the prime vertical is found to read 39 48'.

The declination of Sirius is 16 35' 20" S. Find the latitude of the observing

station. Allow for refraction.

Ans. Lat., 26 30' 1" S.
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12. At a place in South latitude the altitude of a star was observed at

its upper and at its lower culminations, the altitude corrected for refraction

at upper culmination being 60 45' 15". and at lower culmination 10 16' 15".

Find the latitude of the place of observation and the declination of the

star.

Ans. Lat., 35 30' 45".

Dec. S., 64 45' 30".

13. On the evening of 8th February, 1914, at a place in S. latitude, the

magnetic bearing of
ft Hydri at its Western elongation was 185 47' 35",

and that of Argus a* its Eastern elongation was 137 24' 42".

Declination of
ft Hydri, .... 77^44'29"S.

Argus, .... 63 56' 36" S.

Determine the latitude of the place and the magnetic variation.

Ana. Latitude, 36 24' 56".

Variation, 9 30' 20" E.

14. The altitude of Regulus at 10 hrs. 08 min. sidereal time was 46 52' 32"

(fully corrected). From the Nautical Almanac we find :

R.A. of Regulus, 10 hrs. 03 min. 17 sec.

Declination of Regulus, . . . .12 26' N.

What was the correct altitude when on the meridian ?

Ana. 46 52' 37-4".

15. On 9th March, 1914, at a place South of Equator in 140 E. longitude

the following altitudes of a Virginis (Spica) were observed near its meridian

passage and their times taken with a chronometer keeping local mean

time :

Observed Altitudes. Local Mean Times.

57 40' 36", 2 hrs. 02 min. 18 sec. a.m.

44' 34", ..... 05 min. 54 sec.

48' 40", ..... 10 min. 50 sec.

50' 10", ..... 15 min. 58 sec. ,,

49' 30", 22 min. 10 sec.

46' 40", 27 min. 00 sec.

42' 35". ..... 31 min. 02 sec.

The sidereal time at G.M.N., March 8th,,is 23 hrs. 1 min. 22-91 sec.

R.A. of Spica = 13 hrs. 20 min. 41-4 sec.

Declination of Spica = 10 43' 00" S.

Find the latitude of the place.
Ans. 42 52' 51".

16. The declination of a star being 40 S., what are the latitudes of the

places where its meridian altitude will be 80 ?

Ans. 50 or 30 S.
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17. In south latitude two stars are observed on the meridian, one north

and the other south of the zenith, the difference of zenith distances being

found to be 13' 03-45" N., the declinations of the stars being 45 38' 37-48" S.

and 42 44' 04-63" S. respectively.

Find the latitude.

An*. 44 17' 52-8".

18. A south circumpolar star was observed at equal intervals shortly

before and after its elongation, when it was found to change its altitude

from 44 35' to 47 35', during an interval of 19 min. 47 sec., by watch

keeping correct mean time.

Find the polar distance of the star and the latitude of the place of

observation.

Ans. 37 20' 30".

Latitude = 33 27' 58.

19. At 6.10 p.m., local mean time, by watch on 15th September, 1907^

in longitude 151 06' 30" East, the magnetic bearing of r Octantis was

170 37' 30", the bearing of the referring mark being 72 50' 45", and the

observed altitude of the star was 34 36'.

R.A. of Octantis, . . . .19 hrs. 12 min. 48 sec.

Declination of Octantis, . . 89 14' 49" S.

Sidereal time at G.M.N., Sept. 15th, 11 hrs. 33 min. 12 sec.

Sept. 14th, 11 hrs. 29 min. 15 sec.

Find the latitude of the observer and the true bearing of the referring

mark.
Ans. Latitude = 33 54' 19".

20. On March 6th, 1914, the altitude of Polaris, when corrected for

instrumental errors and refraction, is found to be 46 17' 28", the mean
time of observation being 7 hrs. 43 min. 35 sec. p.m. and the longitude of

the place 37 W.
Sidereal time at G.M.N., March 6th, 22 hrs. 53 min. 29-8 sec.

R.A. of Polaris, March 6th, . . 1 hr. 27 min. 37-3 sec.

N. declination of Polaris, March 6th, 88 51' 8"

Find the latitude.

Ans. N. 46 3' 35".

21. The observatory at Stockholm is in latitude 59 20' 33" N., and that

at the Cape of Good Hope in latitude 33 56' 3-5" S. The declination of

Sirius is 16 35' 22" S. Find the altitudes of Sirius when on the meridian

at Stockholm and at the Cape of Good Hope respectively.

Ans. 14 04' 05" and

72 39' 18-5".

22. The upper transit of a South circumpolar star was observed to occur

at 7 hrs. 05 min. 28 sec. p.m. local mean time, and to reach its greatest
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western elongation at 11 hrs. 44 min. 30 sec. p.m., when its observed azimuth

was 33 48'.

Find the latitude of the place of observation and the declination of the

star. , Ans. Latitude, 31 02' 52" S.

Declination, 61 32' 11" S.

23. On March 13th, 1911, at a place South of the Equator, in longitude

9} hours E., at 6 minutes before apparent noon, the altitude of the sun's

lower limb was found to be 58 04' 20", at which time clouds prevented
further observation. The sun's declination at G.M.N., March 13th, is

3 15' 07-4" S., and on March 12th 3 38' 41-8" S.

Find the latitude of the place by reduction to the meridian, the sun's

.semi-diameter being 16' 07", its parallax 5", and refraction 37".

Ans. 35 02' 28".

24. The altitudes of a star when it crosses the meridian and the prim
vertical of a place are a and b. If Hs the latitude of the place, show that

cot I = tan a sec a sin b.

25. The meridian altitude of Altair is 51 55' 45", its declination being

8 34' 34" N. and the meridian altitude of 3 Pavonis is 52 54' 32", its North

polar distance being 156 36' 18". Find the latitude of the place of obser-

vation.

Ans. 29 30' 15-5" S.

26. At a place, south of the equator, the meridian zenith distances of the

two stars y* Norma and <r Scorpii were observed, the former to the south,

the latter towards the north. The observed difference of the zenith distances

was found to be 19' 21". Find the latitude of the place of observation.

Declination of y
2 Norma, . . 49 57' 08-3" South

ff Scorpii, . . 25 23' 31-2" South

Another observer, stationed some distance to the north, found the differ-

ence of the zenith distances of these stars to be exactly the same. Deter-

mine his latitude also.

Ans. 37 50' 00-25" and

37 30' 39-25".

27. The mean altitude reading from four observations of Polaris was

51 39' 34-25", the mean readings of the alidade level E., 5-5, 0., 6-5, one

division of level = 15", mean chronometer time 7 hrs. 09 min. 54-8 sec.,

the chronometer keeping L.M.T. and being 3 min. 24 sec. fast. The longi-

tude of station was hr. 2 min. 9 sec. E. G.S.T. at G.M.N. on the day of

observation was 13 hrs. 05 min. 34-1 sec. Declination of Polaris, 88 45'

50-8" ;
R.A. of Polaris, 1 hr. 22 min. 26 sec. Barometer, 30-27". Ther-

mometer, 42. Compute latitude of place. (Example from "
Topographical

Surveying," by Major Close.)
Ans. 51 23' 34".
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CHAPTER X.

THE DETERMINATION OF TIME BY OBSERVATION.

IN this chapter it is proposed to consider the principal

methods available to the surveyor for the practical

determination of the local mean or sidereal time by
observation. Other methods have been devised, but

the methods about to be described are those that have

proved in practice to be the most convenient and satis-

factory. Nearly all the ordinary time determinations of

the surveyor are made by the second of the following

methods, a convenient observation that may be carried

out in the day light, and by which the time may be

readily found with ordinary instruments with an error

of not more than one or two seconds. One second of time

will, of course, correspond to 15" of hour angle.

First Method By Meridian Transits. We know that the

local sidereal time at the instant that a star is on the

meridian is measured by the R.A. of the star. Conse-

quently, if we make the observation upon a star whose

R.A. is known, by setting a theodolite up in the meridian

and noting the time of transit of the star across the

vertical wire, we have clearly a very simple way of finding
the sidereal time at that instant and thus of determining
the error of a watch or chronometer.

A similar observation may be made upon the sun, by
noting the times of transit of the E. and W. limbs. The
mean of these times will be the time of transit of the sun's

centre, which takes place at apparent noon. From the

Nautical Almanac we can find the equation of time for

the given date, from which the mean time at the instant
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may be found. If only one limb be observed, then allow-

ance must be made for the time occupied by the sun's

semi-diameter in crossing the meridian, which is given
in the Nautical Almanac on page 1 for each month.

EXAMPLE. On December 1st, 1914, at a place in longitude 9 hrs. 45 min. E.,

the meridian times of transit of the E. and W. limbs of the sun across the vertical

wire of a theodolite were taken with a watch supposed to keep the standard time

of the meridian 9 hrs. 30 min. E. The observed times of transit being 11 hrs.

32 min. 32-5 sec. and 11 hrs. 34 min. 52-5 sec., determine the error of the

watch.

From the Nautical Almanac we find that at Greenwich apparent noon

on December 1st, 1914, the equation of time, to be subtracted from apparent

time, is 11 min. 6-47 sec., and that it is decreasing, the variation in 1 hour

being 0-918 second.

Therefore, 9| hours before this i.e., at apparent noon in longitude

9 hrs. 45 min. E. the equation of time will be 11 min. 6-47 sec. + 9|

X 0-918 sec. = 11 min. 15-4 sec.

.-. L.M.T. at L.A.N. - 11 hrs. 48 min. 44-6 sec.

.-. Standard time at L.A.N. = 11 hrs. 33 min. 44-6 sec.

But the time of transit of the sun's centre i.e., the mean of the two

observed times was 11 hrs. 33 min. 42-5 sec.

Therefore, the watch was 2 seconds slow.

2

Fig. 42.

The Effect of an Error in the Direction of the Meridian.

If the instrument be in accurate adjustment, but the

direction of the meridian be in error, then the meridian

set out will pass through the zenith of the observer, but

not through the celestial pole. In Fig. 42, let Z C denote
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the erroneous meridian, making an angle that we will

call e with the true meridian Z P A. Then a star will

intersect the apparent meridian at S, and the time noted

will be either too soon or too late, according as the meridian

is wrongly marked out to the East or West of the true

direction, the error being measured by the hour angle
S P Z, which we will call /L

P Z = c = co-latitude

P S= p= polar distance of star.

Then, in the triangle P Z S,

cot p sin c = cot e sin h -j- cos c cos h.

Since e and h are both small, we may write, without

appreciable error, h and e instead of sin h and sin e respec-

tively, and may put cos h and cos e each = 1.

. . e (cot p sin c cos c)= h.

A= a
85
?. <-.?). (1)
sin p

Thus h will have its smallest value when p is nearly = c
;

that is to say, when the observed star makes its meridian

transit near the zenith.

If in equation (1) c== 60, or the latitude of the place
is 30, and p= 40, then, if e= 01' of arc, h= 32" of arc

or 2 seconds of time. Thus, in this case, an error of

1 minute of arc in the direction of the meridian will

make the time of transit wrong by two seconds.

It is clear, therefore, that the method requires the

meridian to be very accurately set out, and the instrument

must be in perfect adjustment, if good results are to be

obtained by this method.

In Fig. 42 we have illustrated the case where the star

transits above the celestial pole. If the lower transit

had been observed, then the angle h would be the supple-
ment of the angle S P Z, and in this case the formula
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sin (c + p)
would become h = e .

sin p

Both are included in the general formula,

sin zenith distance cos alt.
h= e

,
or e

sin p cos dec.'

\\hich applies to all cases.

The error is thus very great if the polar distance of the

star is small, and is least for those stars that transit

near the zenith.

Z

Fig. 42a.

The Effect of an Error in the Horizontality of the Trans-

verse Axis. - - The direction of the meridian may be

accurately set out with the telescope horizontal or nearly

so, and yet, if the transverse axis is not horizontal, the

line of sight may depart considerably from the meridian

at high altitudes. If the angle made by the transverse

axis with the horizontal be determined by means of the

striding level, the necessary correction to the time of

transit may be made as follows :

In Fig. 42a, the meridian actually swept out by a

telescope with the transverse axis slightly tilted is repre-

sented by A S B, A and B being the North and South

Points, and Z the zenith. The transit of the star is

observed in consequence at a point S on this circle, and
the error in time is measured by the angle S P Z.
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In the triangle EPS
S P = p= polar distance of star,

B P= 180 1= supplement of latitude,

Angle P B S e = error measured by striding level,

Angle B P S= x= required error in time of transit.

.-. cot S P sin B P = cot e sin x -f- cos B P co^ x.

.-. treating x and e as small quantities,

x
cot p sin /= - - cos I.

sin (Z-f p) sin altitude
x=e -

,
ore-

sin p cos dec.

This formula gives us the hour angle of the star at the

moment of observation. Usually e and, therefore, x will

be in seconds of arc, and x must then be divided by
15 to determine the error of the observed time of transit

in seconds of time. Clearly the transit will be observed

either too soon or too late according to the direction of

tilt of the transverse axis.

If the star transits below the pole, x will be the supple-
ment of the angle B P S, and we get

sin (I p) sin alt.
x= e -

,
which again = e -

sin p cos dec.

The error in time in this case increases with the altitude.

EXAMPLE. At a place in latitude 30 S. the sidereal time of transit

of a star across the meridian is observed to be 12 hrs. 30 min. 17-5 sec., the

declination of the star being 58 30' S. The readings of the striding level,

one division of which = 13", are :

L. R,

6-0 5-0

3-6 . 7-2

9-6 12-2

9-6

4 ) 2-6

0-65

0-65 X 13 --= 8-45".
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sin 61 30'
.-. error m hour angle = 8-4o X ^rs-^7 = 14-21 .

sin 31 30

This is equivalent to 0-95 second of time.

As the right-hand side of the axis is the higher, and the telescope is directed

towards the South, the transit is, therefore, observed too soon by this amount-,

and the corrected time of transit across the meridian is 12 hrs. 30 min.

18-45 sec.

Meridian Transits on Both Sides of the Zenith. A consider-

able improvement may be made in the accuracy of the

method by taking observations of the times of transit

of two stars, one on each side of the observer's zenith.

In Fig. 43, let Z denote the zenith, P the celestial pole,
A Z P B the direction of the true meridian, and C Z D
the direction of the meridian actually set out, the figure

being drawn as though the celestial sphere were viewed

Fig. 43.

from above. Suppose that the times of transit of two
stars are observed, one at S t and the other on the opposite
side of the zenith as at S2 . Then, since both stars move in

the same direction, as shown by the arrows, if the observed

time of transit of Sj is later than it should be, owing to

the faulty determination of the meridian, the time of

transit of S2 will be correspondingly earlier. If the stars

are well selected, it may be that the time errors of the two
observations are equal and opposite, so that the mean of

the two results will give a correct time determination in

spite of the error in the setting out of the meridian. This

will be the case if the hour angle S x P Z is = the angle
S2 P Z, for then one observation will be just as much
too soon as the other one is too late.
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The conditions that this may be the case are readily
obtained as follows :

Let angle B Z D = e= meridian error, and suppose that

the hour angle S x P Z = S2 P Z == h,

c = co-latitude P Z.

Then, from the triangles S x
P Z, S2 P Z,

% sin h sin Z S x sin Z S2

sin e sin P S x sin P S2

But, since the error e is small, we may write very

approximately P Sj= c Z Sj^ and P S2
= c + Z S2 .

sin (c
- Z SJ _ sin (c + Z S2 )

sin Z Sj sin Z S 2

sin c . cot Z S l cos c= sin c cot Z S 2+ cos c.

cot Z Sj cot Z S2
= 2 cot c.

This, then, is the condition that has to be satisfied

by the zenith distance of the two stars if the observations

are to be so balanced that by taking the mean of the

two we eliminate, or nearly so, the error due to a faulty

setting out of the meridian.

The following table, based upon the above formula, gives

the proper zenith distance of the star on the opposite side of

the zenith to the pole, corresponding to different zenith dis-

tances of the other observed star, for different latitudes :
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The advantage of selecting the two stars in this way
may be illustrated by a computed example. Suppose
that the place of observation is in latitude 30, and that

the polar distance of the 'star observed on the same
side of the zenith as the pole is 40, so that its zenith

distance is about 20. Suppose, further, that the marked
meridian is as much as 1 in error.

Computing with these data the spherical triangle

S P Z of Fig. 42, it may be shown that the hour

angle S P Z is 2 min. 04-8 sec. In other words,
the observed transit will take place too soon by thi&

amount.

Now, according to the table, the star observed on the

opposite side of the zenith should have a zenith distance

of 32 08'. Suppose it actually has a zenith distance of

32, equivalent to a polar distance of 92. Then, computing
in the same way the hour angle of this star when on the

faulty meridian, we find that its observed transit will

be too late by 2 min. 04 sec.

Thus from one observation the chronometer would be

set too fast by 2 min. 04 sec., and from the other it would
be set too slow by about the same amount, and the mean
of the two observations would give the time correct to

the nearest second in spite of the fact that the direction

of the meridian is 1 in error.

If, however, the zenith distances of the two stars are

not balanced in the way indicated, the accuracy of the

mean result is nothing like so great. If, for example, the

two zenith distances were the same, the star observed

on the opposite side of the zenith to the pole having a

zenith distance of 20, or a polar distance of 80. Then,
on computing the spherical triangle, it will be found
that the observed transit of this star is too late

by 1 min. 24 sec., so that the mean of the two
observations is then in error to the extent of about
20 seconds.
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Second Method By Extra Meridian Observations of Sun or

Star. This is, as a rule, the most convenient and suitable

method for the determination of time by the surveyor.
It consists in the measurement of the altitude of sun or

star when out of the meridian, at the same instant noting
the chronometer time. Then, from a knowledge of the

latitude of the place and the declination of the body
observed we may compute the proper local time at the

instant of observation, and so determine the error of the

chronometer.

The most favourable time for making such an obser-

vation will be when the altitude of the celestial body is

Fig. 44.

changing most rapidly, and this will be the case when

it is near the prime vertical. This position has also

other advantages, as we shall see in the course of the

discussion.

As an altitude has to be measured, refraction must be

allowed for, and as there is considerable uncertainty

about this at low altitudes, the star observed should have

an altitude of at least 15.

The method involves the solution of the same spherical

triangle that we have discussed in connection with extra-

meridian observations for azimuth. Thus, in Fig. 44, if
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S is the star observed, then in the spherical triangle

Z P S we know the three sides :

Z P = c = co-latitude,

S P = p= polar distance of star,

Z S= z= zenith distance, or the complement of

the observed altitude.

Therefore, we can compute the hour angle S P Z, from

which we can find the local sidereal time if we know the

R.A. of the star, or this at once gives us the local apparent
time in the case of the sun.

Let the angle S P Z =h.

Then, we have three available formulae adapted to

logarithmic computation, any one of which may be used

for computing h. They are

if s = ^ (z + c -f- p)

h /sin (s c) . sin (s p)
sin - = y

2 sin c . sin p

h /sin s . sin (s z)
cos -- = v

2 sin c . sin p

h /sin (s c) . sin (s p)
tan - = y - ~

:
; : -

2 sin s . sin (s z)

The Choice of a Formula. Of the three formulae, that

for cos is somewhat the simplest, as we must find s in

any case, and we have then only to find s z in addition.

With the sine formula we have one more subtraction to

make, but there is the advantage that only tables of log
sines are used, and there is less risk of mistake in taking
out the logarithms.

If, however, we are utilising the same observation, as

may be done, for the determination of azimuth in addi-

tion, then we shall require to compute also the angle
S Z P. In this case it is a decided advantage to select
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the tangent formula for the computation of both angles,

for we shall then need only to look up four logarithms,
as the same expressions sin s, sin (s c), sin (s p), and

sin (s z) will occur in the tangent formulae for both

angles. If, on the other hand, we use the sine or cosine

formula for the two angles, it will be necessary to look

up six logarithms.

Another important point in the selection of a formula

is this. The variation in value of the tangent of an angle,

as the angle increases from to 90, is very much greater
than in the case of a sine or cosine. Consequently a table

of tangents will enable us to determine the value of an

angle with greater precision than a table of sines or

cosines. This is of practical importance when the angle
under consideration is near to or 90. Thus there is

very little variation in the value of the cosine of an angle

up to 2 or 3, and, if we wish to determine the values

of such small angles to seconds, a table of cosines is not

nearly so good as a table of tangents. Similarly, there

is very little variation in the sine of an angle near to 90,
and it becomes difficult to compute such angles with

precision from a sine table. It follows, therefore, that

if h is near or near to 90, the tangent formula is the

best one to adopt.
Data Necessary for Computation. In addition to the

measured altitude, we require a knowledge of the latitude

of the place and the declination of the body observed.

The declination for a star is taken straight from the

Nautical Almanac, but the declination of the sun has to

be found by using approximate values for the longitude
and local time. If the result obtained shows that the

assumed local time is -very much out, the calculation

should be repeated by using the corrected value of the

local time found from the first computation.
Arrangement of the Computation. It is worth some trouble

to make a neat form for the computation. A good
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arrangement reduces the work, and is an aid to accuracy.
The following, for instance, is the method adopted in the

printed forms of the Queensland Survey Department :

p= 5934 /

48
//

log sin 9-9356770

c= 76 05' log sin 9-9870611

z= 66 34' 19" 19-9227381

2
)
202 14'0r' subtract from 20-

9 n_ 41 32' 15-5" loS~--:
= 0-0772619

s ~ P~ sin p sin c

8-c = 25 02' 03-5-
iogsin 9-8215856

log sin = 9-6265032

2
) 19^5253507

.-.
i h= 35 22' 48" log sin 9-7626753

Where the same observation is to be utilised for both

time and azimuth, a neat device is to proceed as follows :

log sin (s c)
= say 9-949960

'

log sin (sp) = 9-046045

Iogsin (s z) 9-875721

28-871726

subtract log sin s 9-945558

2
)
18-926168

9-463084

From this we have simply to subtract log sin (s z)
7

ry

and log sin (s p) in order to get tan and tan -
f

respectively.
9-463084 9-463084

log sin (sz) = 9-875721 9-046045

log tan- 9-587363 log tan - 10-417039

Having Computed the Hour Angle to Find the Time of

the Observation. In the case of a star the angle S P Z,
turned into time by dividing by 15, measures the interval

13
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of sidereal time after or before the time of culmination,

according as the star is observed on the West or East

of the meridian. But the R.A. of the star is equal to the

sidereal time at the instant of culmination. Therefore,

the sidereal time at the moment of observation is obtained

by adding (or subtracting) the value of h to the R.A. of

the star. This may be turned into mean time in the way
already discussed.

Thus, if the R.A. of the star is 7 hrs. 30 min., and the

angle h is 35, the star being observed in the West, then

the local sidereal time at the moment of observation is

7 hrs. 30 min. + 2 hrs. 20 min. = 9 hrs. 50 min.

If the sun has been observed, the value of the angle
h at once gives us the interval of solar time before or after

the meridian transit of the sun that is to say, it gives
us the local apparent time. To convert this into mean
time the equation of time must be determined at that par-
ticular instant. To do this we first find the corresponding
Greenwich apparent time, by allowing for the difference of

longitude, and then take the equation of time from page 1

of the Nautical Almanac, allowing for the hourly variation.

Suppose, for example, that the angle k, for a sun observation, is 48 20',

the observation being made at a place in longitude 60 W. on May 23rd in

the afternoon. We have, therefore,

Local apparent time, . . .3 hrs. 13 min. 20 sec.

Longitude, . . . . .4 hrs. min. sec.

Greenwich apparent time, May 23rd, 7 hrs. 13 min. 20 sec.

We have then to find the equation of time at this instant. The Nautical

Almanac gives for this date, 1914, the equation of time at apparent noon,

Greenwich, as 3 min. 30-40 sec. The variation in one hour is given as

0-191 second, the equation decreasing on successive days. The Almanac

states that the equation of time is to be subtracted from apparent time.

Hence, at the given instant,

Equation of time = 3 min. 30-40 sec. 7-222 x 0-191 sec. = 3 min.

29-02 sec.

Therefore, the required mean time is

3 hrs. 13 min. 20 sec. 3 min. 29-02 sec. = 3 hrs. 09 min. 50-98 sec.



DETERMINATION OF TIME BY OBSERVATION. 195

Averaging Several Observations of the Same Star. In

practice it is usual to take at least two, and commonly
four, observations in as quick succession as possible, half

being taken with F.L. and half with F.R. The computa-
tion is then made as though one observation only had

been taken, the mean of the altitudes being assumed

to be the true altitude at the mean of the noted chrono-

meter times.

The object of this procedure is to eliminate instrumental

errors, but this is done at the expense of introducing
another error due to the fact that the assumption made
is not mathematically exact. The investigation of the

magnitude of the error thus introduced into the work is

too complex for insertion here, but it may be stated that

the surveyor is quite safe in thus averaging altitude

observations extending over a range of 2 in altitude

under ordinary conditions. The error thus made in an

extra-meridian time determination is then generally only
a small fraction of a second of time, its exact magnitude

depending upon the latitude of the observer, the declina-

tion, and hour angle of the heavenly body. It is least

when the hour angle is nearly 90.

Observations on Both East and West Stars. It is a great

improvement in accuracy to take one set of observations

upon a star in the east and another corresponding set,

under as similar conditions as possible, upon a star in

the West. The averaging of two such sets of observations

tends to eliminate certain classes of errors, and this should

always be done where the highest accuracy is sought.

If, for example, the refraction assumed is too great, the

corrected altitude will be too low, and the computed time

will be too early for a star in the east, while it will be

correspondingly too late for a star in the west. If the

two errors are about equal, as will be the case if the E.

and W. stars make about the same horizontal angle
with the meridian, and are observed at about the same
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altitude, then the average of the two sets of results will

be correct. Similarly, the effects of any systematic

error in the measurement of altitude are eliminated by

pairing sets of observations in this way. The same

applies to extra meridian observations for azimuth.

EXAMPLE OF EXTRA MERIDIAN OBSERVATION ON SUN FOR TIME.

Forenoon Observations.

Place Survey Office, Adelaide. Thermometer 56.

Longitude 9 hrs. 14 min. 20 sec. E. Barometer 30-49 inches.

Latitude 34 55' 38" S. Date -15th July, 1914.

Value of 1 division of bubble 10". Standard Meridian 9 hrs.

30 min. E.

Chronometer keeping approximately standard time.

OBSERVATIONS.

Computation for sun's declination at assumed approximate time of

observation.

Approximate standard time of observation,

14/7/14, .

Difference for standard meridian,

Corresponding G.M.T., .

Declination : 14th July, 1914 (G.M.N.), .

Difference for 12 hrs. 02 min. 04 sec.,

21 hrs. 32 min. 04 sec.

9 hrs. 30 min. 00 sec.

12 hrs. 02 min. 04 sec.

21 47' 03-3"

04' 28-6"

Declination at instant of observation (North), 21 42' 34-7"

Sun's South Polar Distance, . . 111 42' 34-7"
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h I sin (s c) sin (s p)
Formula Tan - =

/

'
* L.

'Y
sin s sm (a z)

CALCULATION.

Mean of observed altitudes, . . . 20 38' 12"

Level correction, ..... 6"

20 38' 06"

Refraction and parallax, .... 2' 21"

Corrected altitude, . . . .20 35' 45"

Zenith distance =
z, .... 69 24' 15"

Co-latitude = c, 55 04' 22"

Sun's polar distance = p, . . . 111 42' 35"

2s, 236 11' 12"

*, 118 05' 36"

s-c, 63 01' 14"

s - p, 6 23' 01"

s-z, 48 41' 21"

log sin (s-c), 9-949960

log sin (s
-

p), ... . 9-046045

logcosecs, .... . 10-054442

log cosec
(.9
-

z),
10-124279

log tan"*, 19-174726

log tan
|
= tan 21 08' 28", . - 9-587363

h, 42 16' 56"

h (in time), ...... 2 hrs. 49 min. 08 sec.

Local apparent time = 24 hrs. h, . .21 hrs. 10 min. 52 sec.

Longitude, , . . . .
.

. 9 hrs. 14 min. 20 sec.

Greenwich apparent time, . . . 11 hrs. 56 min. 32 sec.
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Equation time at G.A.N., ... 5 min. 33 sec.

Correction for 11 hrs. 56 min. 32 sec., . 3 sec.

Equation time instant observation, . 5 min. 36 sec.

L.A.T., . .... 21 hrs. 10 min. 52 sec.

L.M.T., . ...... . .. . 21 hrs. 16 min. 28 sec.

Diff. Standard Merid., . 15 min. 40 sec.

Local Standard time, . . . . 21 hrs. 32 min. 08 sec.

Chronometer time, . . .-." . . 21 hrs. 32 min. 04 sec.

Error of Chronometer, . . * 04 sec. slow

EXAMPLE FOR REDUCTION.

With the same instrument as that used in the preceding observation

a similar set of four sun observations was taken on the afternoon of July

21st, 1914, at the same place. The mean altitude obtained was 23 53' 36",

the average alidade level readings were E. 10-5, 0, 9-5. The mean of the

chronometer times was 2 hrs. 52 min. 52-5 sec.

From the Nautical Almanac

Declination of sun, at G.M.N., July 20th, 1914, 20 47' 18-2" N.

Variation in one hour at noon on the 20th, . 27-60"

21st, . 28-47"

Equation of Time, G.A.N., July 20th (to be added

to apparent time), . . . . . 6 min. 05-99 sec.

Variation in one hour, . ? . . . 0-165 sec.

Longitude, standard time, and latitude are given in the preceding case.

The chronometer being supposed to keep standard time, determine its

error. Ans. 02-1 sec. slow.

The Effect of an Error in Latitude. It is important that

we should know to what degree of precision the latitude

must be known in order that the time may be determined.

This may be readily investigated in a manner similar to

that adopted with corresponding problems previously.
From the spherical triangle S Z P of Fig. 44,

cos z = cos c cos p-\- sin c sin p cos h.

If c is too large by a small amount y, then, for the

same measured zenith distance z, h will be too small by
an amount x, and we shall have

cos z= cos (c + y) cos p-\- sin (c + y) sin p cos (h x).
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Subtracting these two equations, and treating x and h

as small quantities, we readily get

cos c cos h sin p -}- sin c cos p
x=y

cot Z

sin c

sin c sin p sin h

where Z denotes the azimuth angle S Z P.

This shows that x will be very large compared with y,

if Z is nearly equal to 0, or if c is nearly 0. That is to

say, a small error in the latitude will produce a very large

error in the time if the body is observed near to the

meridian, or if the observation is made in high latitudes

near to either terrestrial pole.

On the other hand, if Z is 90 i.e., if the observation is

made on the prime vertical x is 0, and an error in latitude

makes no difference. In this case the angle S Z P is a right-

angled triangle, and we can get a relation between p, z,

and h that does not involve c at all, so that a knowledge
of the latitude is unnecessary. If the observation is made
near to the prime vertical, therefore, an error in latitude

will produce very little effect on the time determination.

The following table, based upon the above formula,

gives the error in time corresponding to an error of 1'

in the latitude for different azimuth angles :

ERROR IN TIME CORRESPONDING TO 1' ERROR IN LATITUDE.*

* If the word Declination be substituted for latitude, the same table will

give the error in time due to an error of 1' in the Declination, the first column

representing, not the azimuth, but the angle Z S P.
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This all points to the desirableness of making the

observation as near to the prime vertical as possible.

The Effect of an Error in the Measured Altitude. By
a method similar to that adopted in the last paragraph it

may be readily shown, if x is the error in the hour angle

corresponding to an error y in the observed altitude, that

x= y cosec Z cosec c

x clearly becomes very great if either Z or c are small,

and it has its least value when Z and c are each 90. Thus,

again, an error of observation has the least effect when
the observation is made on a celestial body near the

prime vertical, and the most favourable place for making
the observation is at the equator.

TABLE SHOWING ERROR IN TIME DETERMINATION OWING TO AN ERROR

OF 1' IN THE MEASURED ALTITUDE, WITH DIFFERENT AZIMUTHS OF

THE OBSERVED BODY.

This table deserves a little careful consideration, as it

shows the degree of precision with which altitudes must
be measured if the time is to be determined within one

second. Under the most favourable possible conditions

an error of J minute of arc will cause an error of one

second in the time, and it may produce an error of two
seconds or even more.

EXAMPLE. In the extra-meridian observation for time set out at length
in paragraph just preceding show that an error of 1' in the measured

altitude will produce an error of 7 seconds in the time.
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The Effect of an Error in the Declination of the Sun caused

by a Defective Knowledge of Longitude or Local Time. With

star observations the Nautical Almanac gives us the

declination of the star with all the precision that is re-

quired, but with sun observations the surveyor has first

of all to compute the declination. To do this he requires

to know both his longitude and the approximate local

mean time.

From the formula

cos z = cos c cos p+ sin c sin p cos h

it appears that the relation between an error in p and an

error in h will be of precisely the same nature as the

relation between an error in c and an error in h. So that

if x denotes the error in the hour angle corresponding to

an error y in the declination

cot Z S P
x= -

. y.
sin p

Thus the table already given, showing the error in time

caused by 1' error in latitude, also gives the error in time

caused by 1' error in declination, provided that the

first column is taken as representing the angle Z S P
instead of the azimuth.

We have already seen that the maximum rate of varia-

tion of the declination of the sun is a little less than 1'

per hour. So that to get the declination of the sun to

the nearest minute it is sufficient to know the time to the

nearest hour. But one hour of time corresponds to 15

of longitude, so that it is seldom that the surveyor will

not know his longitude sufficiently well for this purpose.
It will be seen from the table that, in order to deter-

mine the time to the nearest second, it will be necessary
to know the declination within only about one-fifth of a

minute of arc under almost the worst conditions of obser-

vation considered in the table. For this it will be usually
sufficient to know the local time within a quarter of an hour.
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If the local time is not known with sufficient accuracy,
its value must be assumed for the purpose of finding

the approximate declination. This is then used in a

preliminary calculation made to determine the time.

The calculation is then made over again, using the approxi-
mate local time so found in order to get a more accurate

value of the sun's declination, which in turn is used in

the computation to obtain a more accurate determination

of the local mean time.

Third Method By Equal Altitudes. If a star be observed

at the same altitude on opposite sides of the meridian ,

the two observations must clearly be made at equal
intervals of time before and after the star's meridian

Fig. 45.

transit. Thus, in Fig. 45, if the star be observed in the

two positions, Sj and S2 ,
so that the zenith distances-

Z Sj and Z S2 are equal, then, if P is the celestial pole,
the two hour angles Z P S x and Z P S2 must be equal.

It follows that the mean of these two observed times

is the time of the star's meridian transit. But the local

sidereal time at the instant of the star's meridian transit

is determined by the star's R.A., which is given by the

Nautical Almanac. This local sidereal time may be

reduced to mean time, and a comparison of this with

the average of the two observed chronometer tinier

determines the error of the chronometer.
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With stars the method is capable of giving very accurate

results, and it has the great advantage that no knowledge
is required of latitude, declination, or even azimuth, and

errors of graduation of the instrument have no effect

upon the result. But to the surveyor it has the obvious

drawback that a considerable interval of time must

elapse between the observations.

As the accuracy of the determination depends upon
the altitude being the same at the two observations, the

star should have an altitude of something more than 45,
in order to get rid of the uncertainties of refraction near

the horizon.

EXAMPLE. On September 1st, 1914, jj
Crucis was observed East of the

meridian at 10 hrs. 42 min. 30-5 sec. by a chronometer keeping sidereal

time. It was again at the same altitude West of the meridian at 14 hrs.

51 min. 20-7 sec. Find the error of the clock.

East 10 hrs. 42 min. 30-5 sec.

West. 14 hrs. 51 min. 20-7 sec.

2
) 25 hrs. 33 min. 51-2 sec.

Meridian transit by chronometer, . 12 hrs. 46 min. 55-6 sec.

R.A. of star, 12 hrs. 42 min. 41 sec.

Chronometer correction, . . . 4 min. 14-6 sec.

As the chronometer is too fast, the correction is to be subtracted from the

chronometer reading.

If, as is more usual, the chronometer keeps local mean

time, the sidereal time at the meridian transit of the star

must be reduced to local mean time in order to compare
with the chronometer time. This cannot be done without

a knowledge of the longitude.

EXAMPLE. At a place in longitude 8 hrs. 35 min. 27 sec. East, on the

evening of September 1st, 1914, the star a Pavonis is observed East of the

meridian at 7 hrs. 9 min. 20-5 sec., with a watch keeping local mean time.

It is again observed at the same altitude to the West of the meridian at

9 min. 30-2 sec. after midnight. Find the error of the watch, having given

G.S.T. at G.M.N., September 1st, 1914, 10 hrs. 39 min. 13-38 sec.

R.A. of a Pavonis, .... 20 hrs. 18 min. 57-4 sec.

Ans. 8-1 seconds slow.
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It is desirable, in order to make the determination as

precise as possible, that a series of observations should

be made upon the star on each side of the meridian,

instead of one observation only. A few times should be

taken when the star is on the East of the meridian at

altitudes differing by 20 or 30 minutes of arc. A corre-

sponding series of times should then be taken when the

star is on the West of the meridian at the same altitudes.

Since all that we want to ensure is that the altitude is

the same at corresponding observations East and West
of the meridian, there is no particular object in reversing
the face of the instrument. The whole set of observations

may be taken with the one face.

The Error due to a Slight Inequality in the Altitudes of two

Corresponding Observations. If in Fig. 45 Z S = zenith dis-

tance of the first observation = z,

Z P = co-latitude = c

P Sj= polar distance = p
h = hour angle Z P Sj_

Z = angle S x Z P = azimuth of star

cos z = cos c cos p -f- sin c sin p cos h
t

.
( 1)

Suppose now that at the second observation the zenith

distance, instead of being z, is z + y, being in error by a

small amount y. Then the hour angle Z P S 2 will be in

error by a corresponding amount x, so that instead of being

h, it will be h + x. Then, from the spherical triangle Z P S2 ,

cos (z+ y)
= cos c cos p+ sin c sin p . cos (h+ x). (2)

Subtracting (2) from (1), treating x and y as small

quantities, we get

y . sin z = x sin c sin p sin h .

sin z sin pBut
sin h sin Z '

*=-- -V-
sin c sin Z
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We see thus that the error x in the hour angle, corre-

sponding to an error y in the second altitude, will be least

when Z = 90, and will be greater the smaller the value of Z,

We draw, therefore, the practical conclusion that the ob-

servations are best made on stars near the prime vertical.

If the declination of a star is slightly less than the

latitude, it will cross the prime vertical near the zenith

and the interval between the times of transit will be

small. This, therefore, is a convenient observation to

make, and the conditions are favourable to accuracy.
The Determination of Time by Equal Altitudes of the Sun.

The above method is an extremely simple one as

applied to the stars, because the -declination of a star

remains constant during the period over which the

observations extend. But in the case of the sun the

declination changes so rapidly that it cannot be considered

as constant, and the theory becomes complicated by
the fact that allowance must be made for the alteration

of declination in the interval between the observations.

Referring again to Fig. 45, if p denotes the polar distance

of the sun when it is on the meridian, then at the first

sight, when the sun is at S l5
the polar distance will be

py, and at the second sight, when the sun is at S2 ,
the

polar distance will be p=f y. The -f or sign is to be

taken in the first of these expressions according as the sun

is approaching or leaving the elevated pole.

If p were constant, we should have

cos z = cos p cos c + sin p sin c cos h.

But if at the first observation, S 1? the polar distance

is p+ y, the hour angle will be h + x, and we have

cos z = cos (p+ y) cos c -f sin (p+ y) sin c cos (h -f x).

Subtracting these two equations, and treating x and

y as small quantities, we get
= y sin p cos cy cos p sin c cos h+ x sin h sin c sin p.

x = y (cot c cosec h cot p cot h).
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Under these conditions the first observation will be made
when the sun is at an hour angle h -fa before apparent

noon, where x is given by the preceding expression, and it

may be positive or negative according as cot c cosec h

is < or > cot p cot h.

Similarly the second observation will be made with the

sun at an hour angle h x after apparent noon, and it may
be shown in the same way as before that the value of x

is given in this case also by the same mathematical

expression.
The mean of these two observed times will therefore

be when the sun is at an hour angle x before apparent
noon.

When the sun is leaving the elevated pole, instead of

approaching it, the mean of the two observed times will be

when the sun is at an hour angle x after apparent noon.

Thus, the true time of transit i.e., the time of apparent
noon is given by

Mean of observed times yV y (cot c cosec h cot p
cot h).

y is the alteration in the sun's declination in half the

time interval between the two observations.

h is half the time interval between the two observations

reduced to angular measure.

The + sign is to be taken if the sun is leaving the

elevated pole, and the --
sign when it is approaching

the elevated pole.

Just as with star observations, it is necessary, in order

to obtain the best results, that a series, say four or six,

of observations should be taken to the sun in the forenoon

and a corresponding set in the afternoon, the sights in

each case being taken alternately to the upper and lower

limbs.

EXAMPLE. At Adelaide, longitude 9 hrs. 14 min. 20 sec. E., latitude

34 55' 38" S., on July 21st, 1914, equal altitude observations of the sun



DETEKMINATION OF TIME BY OBSERVATION. 207

were taken in the forenoon and afternoon. The means of the noted times

were 9 hrs. 35 min. 03 sec. a.m. and 2 hrs. 37 min. 15 sec, p.m. by a watch

keeping mean time.

12 hrs. 00 min-. 00 sec.

subtract 9 hrs. 35 min. 03 sec.

2 hrs. 24 min. 57 sec.

add 2 hrs. 37 min. 15 sec.

2
)

5 hrs. 02 min. 12 sec. = time between observations.

2 hrs. 31 min. 06 sec. .'. h=3T 46' 30".
subtract from 2 hrs. 37 min. 15 sec.

hr. 6 min. 09 sec. = time by watch at apparent
noon.

c = 55 04' 22"

Declination at G.A.N., July 21st, . . 20 36' 02-5"

Correction for longitude, .... 2' 41 -5"

Declination at L.A.N., . . . .20 38' 44'

.'. p, 110 38' 44'

cot c . cosec h . . .
= 1-140

cot p cot h . . . . = -486

cot c cosec h cot p cot h . . = 1-626

Change in declination in 2 hrs. 31 min. 06 sec. = 71-69",

and sun is approaching elevated pole,

1-626 x 71-69
.-. time of apparent noon = 6 09 -

=-= seconds
15

= 6' 09"- 7-6" = 6' 01 -4".

But, from the Nautical Almanac, the equation of time to be added to

apparent time at L.A.N. is 6' 08-3", which is, therefore, the true time of

apparent noon.

Thus the watch is 7 seconds slow.

Fourth Method -Almucantar Method for Time Observations.

In 1884 Mr. S. C. Chandler, at the Harvard College

Observatory, U.S.A., devised a form of instrument in

which the telescope was fixed at a constant angle with

the vertical, so that the line of sight traced out a hori-

zontal circle on the celestial sphere, and observations for

the determination of latitude and other purposes were

made by noting the times of transit of stars across the

fixed horizontal circle. The instrument was named an
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"
almucantar," and it proved to be capable of very-

remarkable work. The same principle may be readily

applied with an ordinary theodolite, and experience has

shown that extremely accurate determinations of time are

possible in this way.*

Any horizontal circle may be used for the observations,

but the most convenient is the one that passes through
the pole of the observer. This has been named the

"
co-

latitude circle/' its zenith distance being everywhere equal
to the co-latitude. The formulse for reduction then become

very simple. The method consists in observing the

times of transit of a series of East and West stars, some-

where near the prime vertical, across the horizontal

Fig. 45a.

wire of a telescope that is set to an altitude equal to that

of the pole. Allowance must be made for refraction, and,

therefore, the telescope is actually set so that its altitude

as read off on the vertical circle is equal to the latitude

of the place plus refraction.

In Fig. 45a, Z denotes the zenith, P the celestial pole,

A and B the North and South points, P S Q the co-latitude

circle. Let S denote the position of a star, somewhere
near the prime vertical, as it crosses the co-latitude

circle.

* See paper by W. E. Cooke,
" On a New and Accurate Method of deter-

mining Time, Latitude, and Azimuth with a Theodolite
"

Monthly Noticee,.

Royal Astronomical Society, January, 1903.
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Let Z P = c = co-latitude.

P S = p= star's polar distance, measured, of course,

along the great circle arc P N S and not along the small

circle P S Q.

Angle S P Z = h = hour angle of star.

Angle S Z P = Z = azimuth of star measured from

elevated pole.

Then, since Z S = c, Z S P is an isosceles triangle, and,

if Z N be drawn perpendicular to the great circle arc

joining S and P, it will divide S Z P into two equal right-

angled triangles.

From the triangle Z N P

cos N P Z = tan P N cot Z P

P P
cos h tan -

. cot c = tan . tan I . (1)
'

2i

if I is the latitude of the place.

To determine the azimuth at which a star will cross

the co-latitude circle, from the same triangle

cos Z P = cot N Z P cot N P Z.

Z
cos c=cot h . cot

,

2
or cot

f
sin I . tan h. . . (2)

2i

Formula
(
1

)
enables the time of transit to be com-

puted, and formula (2) gives the azimuth if required.

If an observation on one star in the East is balanced

by a corresponding observation on a star in the West

of somewhere about the same declination, then the mean
of the two time observations will give a correct result

even if the co-latitude circle is considerably out. If, for

instance, the co-latitude circle is set out too low, the

observed time of transit in the East will be too soon, but

that in the West will be too late, and if there is not much
14
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difference in the declinations of the stars the time of

transit will be just as much too soon in the one case

as it is too late in the other. Thus by averaging the two

results any small error in the setting out of the co-latitude

circle is practically eliminated, and it is not necessary,

therefore, in order to apply the method that the latitude

of the place should be known with precision. An approxi-
mate latitude will suffice.

For precisely the same reasons as have been investi-

gated when dealing with extra-meridian observations for

time, slight errors in latitude, declination, and altitude

will have least effect upon the result when the stars

observed are near the prime vertical. The stars should

be selected from a zone of about 20 on each side of the

prime vertical.

EXAMPLE. On May 3rd, 1903, in Lai. 31 56' 45" S., the transit of /?

Orionis was observed in the West across the co-latitude circle at 8 hrs. 55 min .

1 -5 sec. by a watch keeping sidereal time. The transit oj a Virginia icas similarly

observed in the East at 9 hrs. 20 min. 23-4 sec. Determine the error of the

watch.

B Orionis. a Virginis.

Declination, . . 8 19' 2-7" S. 10 39' 30-1" S.

p, . . ..'".. 8140'57-3" 7920'29-9"

\ ]>, .
- . . 40 50' 28-6" 39 40' 15"

log tan
|,

. . 9-9367323 9-9187412

log tan/, -. . 9*7948752 9-7948752

log cos h, .
. . 9-7316075 9-7136164

/*, . . . . 57 22' 58" 58 51 '31"
I) in time, . . 3 hrs. 49 min. 32 sec. 3 hrs. 55 min. 26 sec.

II. A. of star, . . 5 hrs. 09 min. 52-6 sec. 13 hrs. 20 min. 07-5 sec.

Computed time, . 8 hrs. 59 min. 24-6 sec. 9 hrs. 24 min. 41 -5 sec.

Observed time, . 8 hrs. 55 min. 01-5 sec. 9 hrs. 20 min. 23-4 sec.

Error of watch (slow), 4 min. 23-1 sec. 4 min. 18-1 sec.

Mean determination of watch error. 4 min. 20-6 sec. slow.

Adjustment of Telescope during Observation. It is the

most essential thing for accurate work, in observations
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of this kind, that the telescope should throughout make

exactly the same angle with the horizontal. It is not

of such importance that the -altitude should be exactly

equal to the latitude, ; a,sr
it is that the altitude should

remain the same throughout the observations. Now, no

matter how carefully a transit theodolite is adjusted,
the bubble attached to the vertical circle will not remain

precisely in the centre of its run as the telescope is turned

from star to star. It is, therefore, essential to accurate

work that this bubble should be adjusted to the centre

of its run just before the star crosses the horizontal wire

in each case. This must be done, of course, by the ad-

justing screw on every transit theodolite that moves
both telescope and vertical circle together without affecting

the altitude reading. After .the reading on the vertical

circle has been set for the first star so that the altitude is

equal to the latitude plus refraction, the altitude screw

which would alter this reading must on no accdunt be

touched. But at each observation the horizontal line

of the vertical circle must be adjusted without altering

the reading of the vernier.

To get the most accurate results observations must
be made upon a number of stars, at least six in the East

and six in the West, and the mean of all the determinations

is taken. The East and West stars should be selected so

that the angles in azimuth that one set make to the

East are as nearly as possible equal to the angles that

the other set make to the West.

Sun Dials.

Whilst the sun dial does not provide the surveyor with

a means of determining local time with anything like

the precision obtainable by the methods that have been

described, it enables the time to be fixed quite sufficiently

near for the regulation of watches and clocks for ordinary
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purposes, and the instrument may be read just as easily as

a clock. It is especially useful in the remote parts of

sparsely populated countries where no other means of

checking the clock times are available.

When a sun dial is illuminated by the direct light of the

sun the shadow of a straight line or sharp straight edge
is thrown upon a plane containing a graduated circle so

marked that the apparent solar time is indicated by the

reading at the place where the shadow intersects the

circle. The plane containing the graduated circle may
be either horizontal, vertical, or inclined. The straight

edge, the shadow of which is thrown upon the circle, is

always set up so as to be parallel to the earth's axis. It

is called the stile, or gnomon of the dial. When the gradu-
ated circle or

"
plane of the dial

"
is horizontal we have

what is known as a horizontal dial, and as this is the

most common form we will consider it first.

The Horizontal Dial. In Fig. 46, let M B L A represent
the plane of the dial, which we may suppose to be ex-

tended indefinitely so that M B L A is the circle in which

it intersects the celestial sphere. C P is the direction

of the gnomon, which again we may suppose to be produced
to intersect the celestial sphere in the celestial pole P.

B P A is the plane of the meridian.

If now S denotes the position of the sun, the line of

intersection of the shadow of the gnomon C P with the

plane of the dial will be the line of intersection of the

plane containing C P and S with the plane M B L A.

MPL represents in the figure the plane passing through
S and C P, and M C L is the line of intersection of this

plane with the plane of the dial, or C L is the direction

of the shadow of the gnomon.
Neglecting the slight alteration in the declination of

the sun during the hours of daylight, S will describe

a circle uniformly on the celestial sphere about P as

centre. The angle S P B is the hour angle of the sun,
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decreasing or increasing uniformly with the time according
as the observation is made in the morning or in the after-

noon.

Then in the right-angled triangle L P A

A P = I = latitude of place.

Angle A P L = h = hour angle of sun.

A L = x = required division along the dial

corresponding to hour angle h.

sin 1= cot h tan x, or tan x= sin / tan h.

Thus, to graduate the dial for the hourly intervals

before and after noon, we must put h= 15, 30, 45,

etc., in succession and compute the corresponding values

of x, knowing, of course, the value of /.

Thus, if the latitude of the place is 30, the first hourly
division on each side of noon will be marked out at an

angle with C A given by

log tan x = log sin 30 -f log tan 15,

from which x= 7 38'.

The next hourly division, indicating either 10 a.m. or

2 p.m. will make an angle with C A given by

log tan x = log sin 30 + log tan 30,

from which x 16 6', and so on.

The reading of the shadow of the gnomon gives the
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local apparent time which must be corrected by the equa-
tion of time, as given by the Nautical Almanac, in order

to obtain the mean time. A table of corrections may
easily be drawn out for different times of the year.

The Prime Vertical Dial. In this case the plane of the

dial lies in the prime vertical. In Fig. 47 let A L B M
be the plane of the dial, which we will again suppose is

continued on indefinitely, so as to cut the celestial sphere.
C P, the direction of the stile or gnomon, is again parallel

to the earth's axis, but this

time P will be the celestial pole
below the visible horizon. APB
is the plane of the meridian.

Then if, as in the previous

case, S denotes the position of

the sun on the celestial sphere,
the apparent movement of S is

to describe a circle on the

celestial sphere with P as

centre, and the hour angle of

S is the angle SPA.
The shadow of P C thrown

by S upon the plane of the

dial will be C M, the line of

intersection of the plane passing

through S and P C with the plane of the dial.

In the right-angled spherical triangle P B M
P B = 90 - /= co-latitude.

Angle B P M = h = hour angle of sun.

B M = x = required division along the dial correspond-
ing to the hour angle h.

cos I= cot h tan x

or tan x= cos I tan ^,

and by this formula the dial may be graduated in a similar

manner to the horizontal dial.

Fig. 47.
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Oblique Eials. If the plane of the dial is inclined to

the horizontal the dial is said to be
"
oblique/' There

is one case that is particularly simple, and has given
rise to some of the simplest sun dial constructions. This

is the case in which the plane of the dial is tilted so as

to be perpendicular to the stile, so that it coincides with

the plane of the celestial equator. With this arrangement
the shadow of the stile on the dial moves round uniformly
with the revolution of the sun and the hour divisions

on the dial are consequently uniformly spaced.

Fig. 48.

Time of Rising or Setting of a Celestial Body.

This is not of much value for the determination of

time, because of the uncertainty of refraction on the

horizon. In Fig. 48, if A S B be the plane of the horizon,

Z the zenith, P the celestial pole, and S the body, which

is exactly on the celestial horizon, then the spherical

triangle P S A is right-angled at A, and

cos SPA=cot SP tan PA.
cos (hour angle S P Z) = tan dec. tan lat.
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From this the hour angle of the body at rising or setting

may be computed, and this will determine the apparent
solar time in the case of the sun or the sidereal time if

a star is observed.

We have here neglected the effect of refraction, which,

amounting as it does to about 36' on the horizon, will

cause stars to be just visible when they are really 36'

below the horizon.

To find the azimuth of the body, we have

cos S P= cos S A cos P A,

sin dec.
or cos S A=

cos lat.'

EXAMPLES.

1. At a place in lat. 35 S., the bearing of a wall is 1 10. Find the apparent
time at the equinox when it casts no shadow.

Ans. 3 hrs. 50 min. 24-5 sec. p.m.

2. Find the true bearing and apparent time of sunrise in lat. 32 S. when
the sun's declination is 20 S. (Take the sun's centre and neglect refraction

and parallax.)
Ans. Bearing, 113 47' 05".

Time, 5 hrs. 07 min. 25 sec.

3. Rigel was observed East of the meridian on the horizontal wire of a

theodolite at 7 hrs. 05 min. 20 sec. p.m. by a watch which is supposed to

keep West Australian standard time (120th meridian). It was also observed

at the same altitude West to cross the horizontal wire at 1 hr. 25 min. 30 sec.

a.m. Neglecting the rate of the watch, find its error.

Date of first observation, . . . January 5th, 1908.

Longitude of locality, .... 1 15 50' 26" E.

Sidereal time at G.M.N., January 5th, . 18 hrs. 54 min. 45-83 sec.

Sidereal time at G.M.N., January 6th, . 18 hrs. 58 min. 42-39 sec.

R.A. of Rigel, 5 hrs. 10 min. 07-29 sec.

Ans. 16 min. 9-8 sec. slow.

4. On July 16th, 1910, in latitude 33 15' 13" S. and longitude 10 hrs.

04 min. 50 sec. E., the observed altitude of the sun's centre was 31 54' 45"

bearing 10 35' 15" magnetic, the referring mark bearing 86 54' 15"

magnetic, time by watch being 10 hrs. 48 min.
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The sun's declination at noon on July 15th at Greenwich was 21 38' 18"

N., and the mean hourly difference 23-05" decreasing.

The equation of time to be added to apparent time is 5 min. 46-18 sec.,

and the hourly increase 0-25 sec.

Find the true bearing of the referring mark, the magnetic variation,

and the error of the watch.

Ans. Bearing, 98 34' 46".

Variation, 11 40' 31" E.

Watch error, 3' 04-3" fast.

5. At a place 40 51' 20" S., 140 20' 30" E., at 9 hrs. 10 min. 20 sec.

a.m. by a watch on 2nd September, 1910, the sun's preceding limb was

found by compass bearing to be 58 14' 20", and the observed altitude of

the upper limb 27 11' 15".

Declination at G.M.N., September 1st, 8 31' 00-7" N. ; hourly variation,

54-24".

Declination at G.M.N., September 2nd, 8 09' 14-4" N. ; hourly variation,

54-58".

Sun's semi-diameter, G.M.N., September 1st, 15' 52-61".

September 2nd, 15' 52-84".

Equation of time (to be added to apparent time), G.A.N., September 1st,

9-04 sec.

Equation of time (to be subtracted from apparent time), G.A.N., Sep-
tember 2nd, 9-66 sec.

What was the declination of the compass and the correct mean time of

observation ?

Ans. Declination, 9 21' 15" West.

Mean time, 9 hrs. 07 min.

57 sec.

6. At a place in latitude 32 S. a vertical rod 6 feet high casts a shadow
15 feet long in a direction bearing 75 12'. What is the apparent time and

the approximate time of year ?

Ans. 5 hrs. 5 min. p.m.
December.

7. If the time be found by a single altitude, show that a small error in

the latitude will have no effect on the time when the body is in the prime
vertical.

8. At 5 p.m. by watch on September 8th at a place in latitude 31 57'

08-4" S., longitude 7 hrs. 43 min. E., the observed altitude of the sun's

centre (corrected for instrumental errors) was 29 58' 25-2". Sun's declina-

tion at G.A.N., September 8th = 5 45' 55-9" N., variation in one hour

56-40".
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Equation of time to be subtracted from apparent time = 2 min. 18 sec.

Find the sun's true bearing and the error of the watch on West Australian

standard time (120th meridian).
AIM. Bearing, 299 49' 06-32".

9. On January 3rd, 1914, at a place latitude 30 15' S., longitude 148 E.,

the following sun observation was taken :

Magnetic bearing of R.M , 200 10' 20".

Bubble divisions on Alidade = 20".

Required : Magnetic Variation and Error of Watch .

Data from Nautical Almanac :

Sun's Declination. Hourly Variation.

Jan. 3rd, G.M.N., 22 53' 02-4" S., . . . 14-08"

Jan. 4th, G.M.N., 22 47' 11-0" S., . . . 15-21"

Equation of time (to be added to apparent time).

Jan. 3rd, G.M.N., 4 min. 23-81 sec., . . 1-162"

Jan. 4th, G.M.N., 4 min. 51-51 sec., . . 1-145"

Ans. Magnetic variation = 9 44

11" E.

Error of watch = 6 min.

42 sec. slow.
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CHAPTER XI.

DETERMINATION OF LONGITUDE.

THE difference of longitude between any two places on
the earth's surface, as we have already seen, is measured

by the difference between either their local sidereal

times or their local mean times at the same instant.

The problem, then, of the determination of the difference

in longitude between A and B amounts to that of the

determination of the difference in the local times at A and
B. By the methods we have considered in the last

chapter we may by astronomical observation determine

the local time at A at some instant, and a means must
be found of determining what is the local time at B
at the same instant, if we are to ascertain the difference

of longitude.
The problem presented is usually that of the deter-

mination of the difference of longitude between two

places rather than the fixing of the absolute longitude
of a place as measured from the now universal standard

meridian, that of Greenwich. Usually we seek to find

the difference in longitude between a point on a survey
and some fixed observatory in the country or some other

point on the survey, the longitude of which has been

previously determined.

In all cases the local time at some instant must be

determined at the place whose longitude is required

by one of the astronomical methods of the last chapter.
The corresponding local time at the reference station
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is then in modern practice usually found by one of three

ways :

(a) By portable chronometers.

(b) By electric telegraph or wireless telegraphy.

(c) By flash-light signals.

(a) By Portable Chronometers. Since the time when
chronometers that will retain a fairly uniform rate have

been generally available, this has been the general method
for the determination of longitude at sea. Every ship
carries a chronometer, which keeps either Greenwich

time or the local time at some known port, and from

an astronomical observation the Captain is thus able to

ascertain the difference between his local time and that

of the chronometer. The method is very simple and con-

venient, but wireless telegraphy, which is capable of much

greater precision, may perhaps largely supersede it in

the near future. To obtain accurate results it is essential

that the chronometer should keep a constant rate, and

the conditions on board a ship are much more favourable

for this than is usually the case when chronometers are

carried about from place to place on land. So that for

land work the box chronometers used at sea are com-

monly replaced by chronometer watches which are more

easily carried and are found to be more satisfactory.

Suppose now that it is required to determine the

difference in longitude between A and B. The watch

or chronometer must first be regulated at station A.

Its error on the local time at that place must be deter-

mined and its "rate" i.e., the amount that it gains
or loses in 24 hours must be found. On the assumption
that the rate remains constant this will enable the local

time at A to be found from a reading of the chronometer

at any time afterwards. If then the chronometer be

transported to B and an astronomical observation be

made there for the determination of local time, it will
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be possible to find from the chronometer the local time

at A at the same instant.

EXAMPLE. At A, September 8th, 1914, the chronometer at 8 p.m. was

found to be 2 min. 6-5 sec. fast, and it was gaining at the rate of 2-58 sec.

in 24 chronometer hours.

At B, September 9th, 1914, from an astronomical observation which

gave the local time as 9 hrs. 12 min. 35 sec. p.m., the reading of the chrono-

meter was 9 hrs. 12 min. 30-6 sec.

What is the difference of longitude ?

The interval of time, as measured on the chronometer, between the two

readings is 25 hrs. 10 min. 24-1 sec. = 1-049 days.

Therefore, in this interval the chronometer has gained 1-049 X 2-58 sec.

= 2-7 sec.

Thus, at B the chronometer was fast by 2 min. 9-2 sec., and the local

time at A was 9 hrs. 10 min. 21 -4 sec., corresponding to the local time of

9 hrs. 12 min. 35 sec. at B.

Thus, the time at B is in advance of that at A by 2 min. 13-6 sec., or

B is to the East of A by 33' 24".

The accuracy of the method is affected by the fact

that the rates of chronometers are not perfectly constant,

and particularly by the fact that the rate whilst being
carried is not the same as when at rest. The best way
to minimise the error is to use several chronometers,
from each of which a longitude determination is obtained,
and the average of the results is taken. If possible,

after the observations have been made at B, the chrono-

meters should be carried back again to A and another

comparison made with the local time there.

This method is now never used by surveyors except
where telegraphic communication is not available.

(b) By Electric Telegraph or Wireless Telegraphy. If two-

places are connected by electric telegraph the difference

of longitude may be obtained with great accuracy.

Suppose that A and B are two stations so connected,.

A being to the east of B, so that the local time at A i&

in advance of that at B.

Then if an operator at A taps a telegraphic key that
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produces a corresponding tap in a telegraphic key at B,
the two taps will be very nearly simultaneous, but not

quite. A certain slight interval of time, a fraction of a

second, will be required to transit the electric current

from A to B and to produce the motion of the recording
instruments. But whether the signal be transmitted

from A to B or in the reverse direction from B to A, the

time taken in transmission will be the same.

If now the operators at A and B note the exact instant

of each tap on chronometers keeping local time, either

mean solar or sidereal, the difference in the times would

at once give the difference in longitude if the taps were

absolutely simultaneous.

But, actually, when the message is sent from A to B,

owing to the time taken in transmission, the tap at B
will be a little later than it should, and the result obtained

for the difference in longitude will be correspondingly
too small.

And similarly when the message is sent from B to A,
the tap at A will be made later than should be the case

if the transmission were instantaneous, and A being to

the east of B, the difference of time will now appear too

great.

Thus by averaging the results of sending messages in

opposite directions a correct value is obtained for the

difference in longitude, and the error due to the time of

transmission is completely eliminated.

With signals sent by wireless telegraphy the velocity

of the electric wave is so great that practically there is

no measurable difference in the results obtained, whether

the signals are sent from A to B or from B to A.

For the most refined determinations the signals as

received are automatically recorded on a chronograph,
but very good work can be done by noting the times

of signals with a chronometer if proper methods are

adopted .
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Recording and Receiving Signals. A set of signals usually
consists of a series of taps made at intervals of 10

seconds by a sidereal chronometer, the set extending
over from 3 to 5 minutes. Each set is ushered in by a

warning rattle of the key. The exact time of each tap
is recorded at the receiving station by an observer who
is counting out the ticks, which represent half seconds,

on a chronometer keeping mean time. If the tap occurs

between 1-5 and 2-0 seconds, the observer judges whether

the time is 1-6, 1-7, 1-8, or 1-9.

It is a very important aid to accuracy that the 10

second signals should be sent by means of a sidereal

chronometer and recorded by a mean time chronometer.

If the chronometer at the sending and receiving ends

kept the same kind of time, the taps would always occur

at the same decimal of a second, and the recorder, after

the first two or three taps, would probably become pre-

judiced in favour of some particular value of the decimal

which he would retain throughout the set. But if one

chronometer keeps sidereal and the other mean time,

the tick of the sidereal chronometer Avill coincide with

that of the mean time chronometer every three minutes,
and in the interval between the coincidences the deci-

mals of a second recorded at the receiving station will

range from -1 to -9, so that the judgment of the recorder

is not likely to be prejudiced in the same way as it would

be if both instruments kept the same kind of time.

Comparison of Chronometers. If two chronometers keep-

ing the same kind of time, both beating half seconds,

are to be compared, it will generally happen that the

ticks of the one do not exactly coincide with the ticks

of the other, but differ by some fraction of a half second

that must be estimated by ear. It is difficult and re-

quires considerable practice to make this estimate nearer

than the fifth of a second. But it is possible to compare
a sidereal .and a mean time chronometer with much
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greater accuracy, because at intervals of about three

minutes the ticks of the two exactly coincide, and, if

the comparison be made at the moment of coincidence,

there is no difference of a fraction of a beat for the ear

to estimate. Thus the difference in the readings of the

two chronometers at this particular instant may be

obtained exactly. The only error will be that which

arises from judging the beats to be in coincidence when

they are really separated by a small fraction. But it is

found that a difference between the beats as small as

0-02 second is sufficient to enable the practised ear to

detect the departure from exact synchronism and con-

sequently the comparison may be made with an error not

exceeding this quantity.
The error of the sidereal chronometer is first obtained

by astronomical observation, in the manner described

in the previous chapter. Then to determine the error

of the mean time chronometer a comparison is made
at one of the moments when the beats coincide. List-

ening to the beats of the two chronometers the observer

judges when a coincidence is about to occur. He then

begins to count^ the beats of one chronometer while he

watches the face of the other. When he no longer per-
ceives any difference in the beats, he notes the corre-

sponding half seconds of the two instruments. The
observed instant on the sidereal chronometer is then

reduced to mean time, after allowing for the error of the

chronometer, and the difference between the result and the

recorded instant on the mean time chronometer gives its

error.

Personal Equation. It is found that different men,
when performing such operations as sending or record-

ing signals, will differ appreciably in their work. One

man, when pressing down a telegraphic key at the instant

the chronometer ticks, will consistently do so a little

too late. Another will invariably press the key a small
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fraction of a second too soon. Similarly when recording
the time signals one observer will consistently make a

larger error than the other. II is found that the more

practised and experienced the observers are, the more

regular and consistent are the errors made in this way,
and that this personal error or

"
personal equation/'

as it is commonly called, remains fairly constant for

long periods of time. Consequently its effects may be

largely eliminated, in the average of a considerable

number of observations, if the personal equations of the

observers be determined both before and after the obser-

vations are made.

In this case the relative personal equation is required
between two observers. It may be most simply obtained

by the observers setting up their instruments near to

one another at the same station. They then send sets

of signals to one another, just as they would do in

ordinary field work, in order to determine their difference

of longitude. This should be done under conditions as

nearly as possible the same as those obtaining at the

actual work in the field. The result obtained, which

should of course be zero, is the relative personal equation
that must be applied in the reduction of the field obser-

vations. It is advisable to observe the personal equation
in this way for two or three evenings shortly preceding
and following the field trip.

When a large number of observations is being made

probably the best way of eliminating the error due to

personal equation is to exchange the observers at the enda

of the telegraph line when half the total number of

signals have been transmitted. When A sends and B
receives, the time recorded at the receiving station should

exactly coincide with the time of sending. Usually it

does not, owing to the existence of this personal equation,
and the time actually recorded by B may be either before

or after the chronometer tick that A is transmitting.
15
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If the time recorded is always after the chronometer

tick, the error will be fairly consistent so long as A is

sending and B receiving. If B is at a station to the

east of A, the effect of this error will be to make the

difference of longitude greater than it really is, but if

B is at a station to the west of A the same error will

make the difference of longitude appear less than it should

be. Thus if the observers change places when half the

observations are over, personal equation is eliminated in

the mean of the whole set and there is no necessity to

make a special determination of it.

Programme of Operations. Observations are made on

several evenings. Professor W. E. Cooke, who was

responsible for the introduction of the almucantar

method of time observation in Western Australia
i
thus

summarises the operations for any one evening :

Observations.

(a) Compare sidereal and mean time chronometers.

(b) Take first half of almucantar observations, using
sidereal chronometer.

(c) Take chronometers to telegraph station and ex-

change signals sending from sidereal and receiving by
mean time.

(d) Complete almucantar observations.

(e) Compare the two chronometers.

Computations.

(/) From the almucantar observations determine the

error of the sidereal chronometer at some definite sidereal

hour, also its rate.

(g) Apply the rate so as to obtain the error at time (a) ;

reduce sidereal time (a) to mean, and hence determine

error of mean time chronometer at time (a).

(h) Do the same for time (e).

(i) From (g) and (h) determine the errors of each

chronometer at time (c).
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(j) Apply these errors to the average of the signals,

also apply the correction for personal equation. Sub-

tract the results from the similar results at the other

station, and thus the difference of longitude will be

obtained.

When a determination of difference of longitude is

made telegraphically between fixed observatories, the

precision of the method is increased by sending the

signals from a clock, the pendulum of which automatically

completes an electric circuit when at the bottom of its

stroke. The record at the other station is then taken on
a chronograph, from which the instant can be read off to

the hundredth part of a second. Such equipment is,

however, not usually available for field work.

(c) By Flash-Light Signals. When two stations are visible

one from the other, flash light signals may be sent from
one at ten second intervals as determined by the tick of

a sidereal chronometer and recorded at the other by
means of a chronometer keeping mean time, just as with

electric telegraph signals. Or the signals may be sent

from an intermediate station that is visible from both.

The observers at each station must of course have
obtained their local time by proper observation, and the

difference between their local times at the instant of the

signal gives at once the difference of longitude. The

signal may be made by the flash of a heliotrope by day
or the eclipse of a bright light at night.
The following examples gives the results of obser-

vations made in this way in Western Australia to de-

termine the difference of longitude between the Perth

Observatory and Mount Maxwell, about 17 miles away
to the east. The signals were made by means of an

acetylene lamp placed in a box, the light shining through
a hole over which a photographic snap-shutter was fixed.

The shutter was released at the proper second and the

time of the flash noted as it was seen through a theodolite
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at the other station. The example is taken from the

Western Australian Handbook for Surveyors :

DIFFERENCE OF LONGITUDE.

Longitude by Lunar Observations. The methods for the

determination of longitude that have just been described

are those nowadays most usually adopted, but before

the invention of the electric telegraph and the perfection
of chronometers the only methods available over long
distances depended upon observations of the moon. The
moon changes its position among the fixed stars much
more rapidly than any other celestial body, its relative

movement amounting to over 13 in 24 hours, or roughly
it moves over a distance equal to its own diameter in one

hour. Consequently it is possible to use it as a clock,

and, by measuring its position with regard to surrounding
stars, we may determine at any instant, with the aid

of the tables of the moon's motion given in the Nautical

Almanac, the corresponding time at Greenwich. It was

chiefly in order that
"

the moon's motion might be

systematically observed for the purpose of providing

navigators with accurate tables, which could be used for

the determination of longitude, that the Greenwich

observatory was originally founded. Lunar observa-
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tions, however, generally entail rather laborious com-

putation, and the results, with the exception of those

obtained by the method of lunar occupations, are not

comparable in accuracy with the determinations made

by the simpler methods previously given. Consequently
such methods are now rarely used on land, and we shall

merely describe the general principles involved.

There are three principal methods of making observa-

tions upon the moon for longitude. They are :

(a) By Lunar Distances.

(b) By Lunar Culminations.

(c) By Lunar Occupations.

(a) By Lunar Distances. The angular distance between

the bright limb of the moon and some bright star in

its vicinity is measured by means of the sextant, and

at the same instant the altitudes of both moon and star

are observed. This is best done by three observers,

one for each measurement, but if there is only one ob-

server, he takes first the altitudes, then the lunar distance,

and then the altitudes once more, noting the time of each

observation. From these he readily deduces the proper
altitudes at the moment when the lunar distance was

measured.

By adding or subtracting to the observed distance the

apparent semi-diameter of the moon, according as the

bright limb of the moon is toward or from the star, the

apparent distance between the star and the moon's centre

is found. The moon's semi-diameter is given on page
3 of each month in the Nautical Almanac, for noon and

midnight of each day. From this apparent distance,

allowing for refraction and parallax, and knowing the

approximate latitude of the place, the observations

enable the distance to be computed as it would be

observed from the centre of the earth, or the true distance

as it is commonly termed. But if we know the true
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distance the corresponding time at Greenwich may be

found from the information given in the Nautical

Almanac. And the local time of the observation is

readily found from the observed altitude of either moon
or star. The longitude is found, of course, as the differ-

ence between the local time and the corresponding
Greenwich time.

In fig. 49 let S and M denote the apparent positions

of the star and the moon's centre respectively, Z being
the Zenith. Parallax and Refraction will affect them

in the vertical planes Z S and Z M. Now refraction

causes a body to appear at a higher altitude than it

really has, whilst a body when viewed from the earth's

centre will have a greater altitude

than when seen from the earth's

surface. Thus to allow for refrac-

tion we have to decrease the

observed altitude, and to allow

for parallax we must increase it.

Now in the case of the moon

parallax is greater than refrac-

tion, the contrary being true for

a star or planet. Thus the
"
true

"

position of S, as observed from the
Fijr 49.

earth's centre, is at S l5 below S,

and the true position of M is at M
1? above M.

In the triangle Z S M, the three sides have been

directly determined by observation, and, therefore, the

angle Z may be computed by the ordinary rules of

spherical trigonometry. Then in the triangle Z S l
M

x ,

Z S x ,
and Z M

1? are known, and also the included angle

Z, consequently the true 'distance Mj Sj may be computed.
The Nautical Almanac used to give a table of true

lunar distances, for every third hour of Greenwich mean

time, from selected suitable bright stars. But these

tables have lately been discontinued as it was decided



DETERMINATION OF LONGITUDE. 231

that they were no longer of sufficient use to warrant their

retention.

The method is not capable of any degree of precision,

about 5 seconds of time representing the accuracy

attainable, and, now that the tables of lunar distances are

no longer published, involves a lot of computation. The
measurements cannot be made by a theodolite, the

sextant being essential, and the method can only be classed

as a rough one under the best circumstances.

(b) By Lunar Culminations. As the moon moves right

round the earth in a lunar month of about 28 days, its

right ascension must change by 360 in that period, or

at an average of about 13 in 24 hours. Thus in one

hour its right ascension will alter on the average by
something over 30 minutes of arc or two minutes of time.

Now the right ascension of the moon may be most easily

measured by observing the difference in time between

its transit across the meridian and that of some known
star. If the local time at the place of observation is

also known, this determines the right ascension of the

moon at a given instant of local time. But the Nautical

Almanac gives the right ascension of the moon for every
hour of Greenwich time throughout the year, and, by
interpolation between the values in the tables, the

Greenwich time corresponding to the measured right
ascension may be found. Then the difference between

the local time of observation and the corresponding
Greenwich time as thus determined gives the longitude

required. The computations are thus simple, and the

method is the easiest of all the lunar methods for finding

longitude.
The observations are facilitated by the tables of moon-

culminating stars given in the Nautical Almanac on p.

412 and succeeding pages. In these tables for each day
in the year there are tabulated one or two stars, known
as moon-culminating stars, that do not differ much from
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the moon in either right ascension or declination, and

are consequently suitable for meridian transit observa-

tions in comparison with the moon. For if the declina-

tion of the observed star does not differ much from that

of the moon, any error in the setting out of the meridian

will affect the times of both transits to the same extent,

and in the difference between the two times of transit,

which is what is sought, the error will be eliminated.

The times of meridian transit are unaffected by
parallax and refraction which introduce complications
in other lunar methods. A disadvantage is that for a

considerable part of the month transits occur at very
inconvenient times.

The method in any case is not capable of great

accuracy. An error of one second in the measurement

of the time of transit of the moon's limb will cause

an error of about 30 seconds of time in the longitude.

Thus a good observation will only determine the longi-

tude within about 10 seconds of time, and only by the

average of a number of careful observations will it be

possible to determine the longitude by this method
within 5 seconds of time, corresponding to IJ minutes

of arc, or to a distance of over one mile near the equator.

EXAMPLE. At a place in approximate longitude 9 hrs. 06 min. E. the

times of transit across the meridian of the moon's bright limb and of the star

y Aquarii icere recorded by means of a chronometer keeping local mean time

on the evening of September 30th, 1914.

Observed time of transit of Moon I.*, . 9 hrs. 14 min. 22-8 sec.

a Aquarii, . 9 hrs. 52 min. 30-2 sec.

Determine the longitude of the place.

Difference in times of transit, . . 38 min. 07-4 sec.

Equivalent interval of sidereal time, . 38 min. 13-66 sec.

R. A. of r Aquarii, . . . . 22 hrs. 26 min. 09-87 sec.

R.A. of Moon I., 21 hrs. 47 min. ott-21 sec.

* The Roman numerals I. and II. are used in the Nautical Almanac

to indicate the moon's preceding and following limbs respectively.
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Allowing for the approximate longitude, the transit takes place at about

8 minutes after Greenwich noon on September 30th.

From the Nautical Almanac we obtain

Time of Meridian Sidereal Time of

Passage at Semi-diameter
Greenwich. Passing Meridian.

Sept. 30th, . . 9hrs. 32-1 min. (upper) 63-92 seconds

Sept. 29th, . . 21 hrs. 10-1 min. (lower) 65-02

Thus, the sidereal time for the semi-diameter to pass the meridian is

given by

63-92 + - .^ =
33 hrs. 32 mm. 21 hrs. 10 mm.

.. R.A. of moon's centre at instant of observation

= 21 hrs. 49 min. 00-98 sec.

Again, from the Nautical Almanac,
R.A. of moon.at Greenwich, hr. = 21 hrs. 48 min. 44-20 sec.

1 hr. --= 21 hrs. 50 min. 41-41 sec.

Therefore, by interpolation, the Greenwich mean time corresponding to

the R.A. of 21 hrs. 49 min. 00-98 sec. is

hr. 08 min. 35-4 sec.

But the observed local time of the observation is

9 hrs. 14 min. 22-8 sec.

Therefore, the longitude is 9 hrs. 05 min. 47-4 sec. East.

(c) By Lunar Occultations. In the course of its monthly
revolution round the earth the moon covers or

"
occults

"

in turn a number of the fixed stars. As the moon ap-

parently moves from West to East among the stars, the

stars in its track first disappear under the Eastern

limb and afterwards reappear on the other side. The

covering of a star in this way by the moon is known
as an

"
occupation," the disappearance of the star

behind the Eastern limb of the moon being known as the
"
immersion/' and its reappearance as the

"
emersion/'

The method by lunar occultations consists in observing
the local time of immersion or emersion, or both, at the

occupation of a known star. At such moments the

apparent right ascension of the star is the same as that

of the Eastern or Western limb of the moon, and, after

making proper allowance for refraction, parallax, and semi-

diameter, the true right ascension of the moon may be
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determined at the instant, and hence, from the tables

in the Nautical Almanac, the corresponding Greenwich

time may be found.

The method is capable of much greater accuracy than

any other method by lunar observations. The two

methods previously described, even under the most

favourable conditions, can give but roughly approxi-
mate results. But from several observations of lunar

occultations a longitude may be determined within less

than one second of time. Unfortunately, however, the

prediction of the circumstances of an occultation and

the complete computation of the observations involve

principles that are rather complex for an elementary
work. Partly on this account, and partly because suit-

able observations can only be made at any one place

some three or four times in a month as a rule, the method
is not one used to any extent by surveyors, and no

further elaboration of the method will in consequence be

attempted here.

Relative Accuracy of Different Methods. Major Close, in

his Text Book of Topographical Surveying, gives the fol-

lowing table showing the terminal error in longitude which

might be expected after a march of 300 miles in a hilly

tropical country.

Method. Probable Error in Longitude.

Triangulation, . . . .100 yards to J mile.

Telegraph, \-to \; mile.

Chronometers, . . .1 mile.

Occultation, . . . . \ mile.

Moon culminations, . . .1 mile.

Lunar distance, . . . .10 miles.

The probable errors "are here stated as distances

measured parallel to the equator, but, as the actual

measurements of longitude are made in time, and as the

distance measured along the earth's surface correspond-

ing to a given difference of time gets less and less as we
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proceed further from the equator, it follows that the

probable errors in distance would be considerably less than

those chronicled at places remote from the equator.
Where a triangulation can be carried on to directly

connect the two places whose difference of longitude is-

required, the determination may be made with the greatest

precision possible. The telegraphic method comes next

in order of accuracy, and is nowadays the method most

commonly used. In order to get anything like the same

accuracy by the method of lunar occultations, the observa-

tions would have to extend over several months, and the

tabulated values for the right ascension of the moon given
in the Nautical Almanac would have to be corrected

from observations made at some fixed observatory.
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CHAPTER XII.

THE CONVERGENCE OF MERIDIANS.

THE line of sight of the telescope of a theodolite in ac-

curate adjustment, as the telescope is turned about its

horizontal axis, traces out a vertical plane. This, if we

regard the earth as spherical, we may consider to be

a plane passing through the centre of the earth. There-

fore, the straight line that is set out by a theodolite is in

reality always the arc of a great circle on the earth's

surface. Now, unless it happens to coincide with the

equator or with a meridian of longitude, any great circle

will cut different meridians at different angles. In other

words, its bearing will vary from point to point. Thus as

we proceed along a straight line set out by a theodolite on

the earth's surface, the bearing of the line will not remain

constant but will gradually alter. A line the bearing
of which was everywhere the same would not be a straight

line. A parallel of latitude for instance is such a line,

but if the telescope of a theodolite is set out truly East

and West at any place its direction would not mark out

the parallel of latitude, which is a small circle, but a great
circle that would ultimately intersect the equator.

This alteration in the bearing of a straight line is an

important matter in surveys of any magnitude, as in

latitudes in the neighbourhood of 60 it amounts to con-

siderably over a minute of arc in a line one mile long,

and in higher latitudes the alteration is still greater.

In fig. 50, let N and S denote the North and South

terrestrial poles, E L M Q is the equator, and A and B
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any two points between which the great circle arc A B
has been set out.

Let N A M S and N B L S be the meridians through A
and B. Then the bearing of the line B A at B is the

angle NBA, and the bearing of the same line at A is

180 -NAB.
The difference between the bearings of the line A B

at the points A and B is known as the convergence of the

meridians between A and B.

If A B is plotted as a straight line on a plane, then the

meridians through A and B will not be drawn as parallel

lines, but as lines making an angle with one another equal
to the convergence.

Denote the convergence by c.

Then c = 180 - N A B - N B A.

Let /= latitude of A and V= latitude of B.

NA=90-/, NB=90 /'.

Denote the difference of longitude between A andp*
by m, so that m = angle B N A.
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Then in the spherical triangle NBA, having given
two sides and the included angle,

tan \ rNBA+NAB)
_ cos \ (NB-NA) cot \rn

cos I (NB+NAJT
.-. cot } (180- NB A-N AB)

cos \ (I I') cot I m

or, inverting

cos

In any ordinary survey, the length of the line A B
will be very small compared to the earth's radius, and
the angles c and m will be so small that tan \ c and
tan | m may be replaced by J c and | m respectively
without appreciable error.

.-. c (in circular measure)

sin \(l+ V)- m (in circular measure),
cos | (I I')

and c (in seconds of arc)

sin i
(I + /') m (in seconds of arc).

cos | (I I')

Again, unless the line A B is a very long one,

cos J (I I'} differs from unity by but a very small

quantity, so that for ordinary purposes

Convergence in seconds = sin mid. lat. x diff. of long.

in seconds.

Another convenient form of the result expresses the

convergence in terms of the
"
departure

"
between A



THE CONVERGENCE OF MERIDIANS. 239

and B
;
that is to say, their distance apart measured in

an East and West direction.

The parallel of middle latitude is a circle of radius

r cos | (I + I'), where r is the radius of the earth in miles,

and, therefore, if d denotes the departure in miles,

d

r cos I (I + I'

.-. convergence in seconds

= sin J (I + I')

= the circular measure of m.

r cos \ (I + V) sin 1"

d tan | (I + l'\

r sin V
Taking r as 3,958 miles we obtain, therefore, the following

rule :

To the constant log, .... 1-7169

Add log tan mid. lat.,

Add log departure in miles, .

The sum is log of the approximate num-
ber of seconds in the convergence,

Thus for a departure of 1 mile in latitude 20, the

convergence is 19" only, but in latitude 40 it is 44",

and in latitude 60 it is as much as 90".

It thus appears that the convergence increases very

rapidly in high latitudes, and that in latitude 60 the

bearing of a straight line one mile long and running

approximately E. and W. will at one extremity be different

by 1-5 minutes from what it is at the other.

The amount of convergence is such that when a straight

line is run several miles in length the bearing of the line

as determined by astronomical observation will differ

appreciably at each end. The nearer the place is to the

equator, the longer the line will have to be before the

difference is sufficient to directly observe. In latitude
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40 it is readily observable at the end of an East and West
line two miles long, in latitude 60 the line need be only
one mile long for the difference to be just as readily

detected. There is no such effect in lines running directly

N. and S., as such lines form a part of a meridian of longi-

tude, and the convergence is greatest at the extremities

of lines of given length, when the direction is E. and W.
The investigation we have given for convergence is of

course an approximate one only, and the formulae ob-

tained are not exact, because the earth is not in reality

a true sphere as has been assumed. The results obtained,

however, are quite sufficiently accurate for all but the

most refined geodetic work.

MISCELLANEOUS EXAMPLES.

1. At what height would a signal need to be erected at station B to be

visible from the instrument at A, so that the line of sight would be 10 feet

clear of the summit of an intervening hill at C ?

Height of instrument above sea level at A, 488 feet. Station B, 20 miles

distant from A, 5-2 feet. The summit of the intervening hill, 12 miles from

A, 442 feet.

AIM. 32-7 feet.

2. A man on a height near Pietermaritzburg, 42 miles from Durban,

owing to the clearness of the air can see a ship 6 miles out at sea. Looking
in the other direction he can see the heights of Drakenburg, which he knows

are 110 miles from him. Find the height of the Drakenburg above the

sea, taking the radius of the earth as 3,960 miles. (Educational Times.)

Ans. Half a mile nearly.

3. From a point in latitude 30 South, longitude 120 East, a line at

right angles to the initial meridian is run Easterly for a distance of 18 miles.

Find the true bearing of the line at its Easterly end, its longitude, and the

bearing and distance to a point in that longitude in the same latitude as

the starting point. Assume the radius of the earth to be 3,960 miles.

Ans. (a) 269 50' 59".

(6) Longitude, 120 18' 02".

(c) Due South, -024 mile.

4. On the evening of the 12th April, 1911, the altitude at meridian transit

of the star a Hydrse, North of the Zenith was observed from two hills,
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A and B, a considerable distance apart. Altitudes of a Virginis, in the

eastern sky, were observed simultaneously from both hills by aid of pre-

arranged signals. Several sets were taken, which, reduced to a mean and

cleared of corrections for refraction and level errors, gave the following

results :
-

At station A the meridian altitude of a Hydrse was 63 22' 40" and the

altitude of a Virginis was 12 14' 18".

At station B the meridian altitude of a Hydrse was 63 44' 40" and the

altitude of a Virginis was 12 44' 18".

The declination of a Hydrse was 8 16' 26" S., and the declination of

a Virginis was 10 42' 0" S., taken from the Nautical Almanac.

Find the distance between the two hills A and B in miles and decimals,

and the true bearing of each station, treating the earth as a sphere having
a radius of 3,008 miles.

Ans. Distance = 44-64 miles.

Bearing of B from A,

55 31' 04".

Bearing of A from B,

335 09' 02".

5. What Is, approximately, the spherical excess in a triangle on the

earth's surface, two sides of the triangle being 163,421 feet and 154,599 feet

respectively, and the observed included angle being 60 05' 12-32"? What
factors do you require for an exact evaluation ?

6. In latitude 45 N. an observer sees a certain star rise in the N.E. If

the observer travels to another place with a slightly different latitude,

show that the change in direction of the same star at rising will be equal
to the change in latitude.

7. Show that all the stars observable from any one place have the same

rate of change in azimuth at rising.

8. Prove that the rate of change in altitude of a star is always greatest,

when the star is in the prime vertical.

16
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True meridian, Determination of,

97.
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pair observations of stars for
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